NUMBERING, REPLACEMENT AND CONTROL PAGES

The page numbering system contained within this Code follows the Quality Management System for Documentation procedures currently in use within the Maritime and Coastguard Agency.

Each page is numbered on the inside bottom edge and contains:
- the MCA identifier for this Code – i.e. MSCP01 the number of the chapter - e.g. Ch1 the revision status of that chapter and page e.g. - Rev1.01 the page number within the chapter e.g. - Page 2

The first page of each chapter indicates the total number of pages within it e.g. - Page 1 of 12. This enables the user the check that all the pages within that chapter are intact. Where pages need to be added to or subtracted from a chapter the first page of that chapter will also be revised to show the new number of pages within it.

The page numbering in respect of page 1 of Chapter 4, for example, would be:- MSCP01/Ch4/Rev1.01/Page 1 of 10

Where additional pages are added within the chapter but the whole chapter is not replaced the new page will be numbered:- e.g. Page 3A

Pages that do not carry any text carry the words:- "Blank Page"

The Code contains an amendment sheet which provides the current revision status of amendments, chapters and pages (an example appears below) against which the revision status may be checked.

Page revisions are indicated by a change in the number after the decimal point:- e.g. Rev1.02, Rev1.03, etc., while chapter revisions are indicated by a change in the number before the decimal point- e.g. Rev2.01, Rev3.01, etc. (page revision reverts to 01)
**SAMPLE AMENDMENT SHEET (FIRST ISSUE)**

**Amendment 00**

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Pages</th>
<th>Revision Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>4</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>5</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>6</td>
<td>All</td>
<td>1.01</td>
</tr>
</tbody>
</table>

**SAMPLE AMENDMENT SHEET (SECOND ISSUED)**

(The following is an example of an amendment sheet where pages 4-10 of Chapter 1 and the whole of Chapter 5 have been revised)

**Amendment 01**

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Pages</th>
<th>Revision Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-3</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>4-10</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>11-16</td>
<td>1.01</td>
</tr>
<tr>
<td>2</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>3</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>4</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>5</td>
<td>All</td>
<td>2.01</td>
</tr>
<tr>
<td>6</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>Chapters</td>
<td>Pages</td>
<td>Revision Status</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>0 (Preface etc.)</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>1</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>2</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>3</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>4</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>5</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>6</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>7</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>8</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>9</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>10</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>11</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>12</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>13</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>14</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>15</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>16</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>17</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>18</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>19</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>20</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>21</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>22</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>23</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>24</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>25</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>26</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>Chapters</td>
<td>Pages</td>
<td>Revision</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>27</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>28</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>29</td>
<td>to be issued later</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>to be issued later</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>to be issued later</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>to be issued later</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>to be issued later</td>
<td></td>
</tr>
<tr>
<td>34 (Appendix 1)</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>35 (Appendix 2)</td>
<td>All</td>
<td>1.01</td>
</tr>
<tr>
<td>36 (Index)</td>
<td>All</td>
<td>1.01</td>
</tr>
</tbody>
</table>
Standing Order Service

Are you making full use of The Stationery Office’s Standing Order Service?

To complete your Code of Safe Working Practices for Merchant Seamen you are required to obtain Section 4. This will be published in late 1998 by The Stationery Office and will be sent out to all standing order customers. From time to time amendments will also be published and with a standing order for class 03 03 028 you can be supplied automatically with all supplements/amendments/new editions of this title as they are issued.

The benefits to you are:

- automatic supply on publication
- no need for time consuming research, telephone calls or scanning of publication lists
- saving on the need and costs of placing individual orders

We can supply a wide range of publications on standing order, from individual annual publications to all publications on a selected subject. If you do not already use this service, or think you are not using it to its full capability, why not contact us and discuss your requirements?

The Stationery Office Standing Order Department PO Box 276
London SW8 5DT

Tel 0171 873 8466, Fax 0171 873 8222
PREFACE

This Code of Safe Working Practices is intended primarily for merchant seamen on United Kingdom registered vessels.

Copies of the current edition of the Code must be carried on all United Kingdom ships other than fishing vessels and pleasure craft, and a copy must be made available to any seaman in the ship who requests it, in accordance with the Merchant Shipping (Code of Safe Working Practices) Regulations 1980. There should always be an adequate number of copies to allow the Master Safety Officer and any members of the Safety Committee to have their own, leaving at least one available for general reference.

This Code is addressed to everyone on a ship regardless of rank or rating because the recommendations can be effective only if they are understood by all and if all cooperate in their implementation. Those not themselves actually engaged in a job in hand should be aware of what is being done, so that they may avoid putting themselves at risk or those concerned at risk by impeding or needlessly interfering with the conduct of the work.

The Code is arranged in sections which deal with broad areas of concern.

The introduction gives the regulatory framework for health and safety on board ships and overall safety responsibilities under that framework.

Section 1 is largely concerned with safety management and the statutory duties underlying the advice in the remainder of the Code. All working on board should be aware of these duties and of the principles governing the guidance on safe practice which they are required to follow.

Section 2 begins with a chapter setting out the areas that should be covered in introducing a new recruit to the safety procedures on board. It goes on to explain what individuals can do to improve their personal health and safety.
**Section 3** is concerned with various working practices common to all ships.

**Section 4** covers safety for specialist ship operations.

The Maritime and Coastguard Agency wishes to acknowledge the support and expert contributions from many working in the shipping industry, but in particular from the members of the Industry Steering Group for the revision of the Code:

Mr G Coldough Ex. Master;  
LLB (London), FNI - Liverpool John Moores University  
Captain J Davies -NUMAST  
Captain G Hicks -NUMAST  
Captain N Matthews -The Chamber of Shipping  
Mr M Ranson -The Chamber of Shipping  
Mr R Rayner -RMT  
Mr M Stubbings -The Chamber of Shipping  
Mr M Williams -The Chamber of Shipping

Maritime and Coastguard Agency  
Southampton  
May 1998
CONTENTS

PREFACE
CONTENTS
INTRODUCTION AND REGULATORY FRAMEWORK

SECTION 1 SAFETY RESPONSIBILITIES/SHIPBOARD
MANAGEMENT

Chapter 1 Risk assessment
1.1 Introduction
1.2 Key terms
1.3 Principles of risk assessment
1.4 Risk assessment in practice
1.5 What should be assessed?
1.6 Who has to carry out the assessment?
1.7 How thorough should the assessment be?
1.8 When to assess?
1.9 Risk assessment pro-forma
1.10 Elements of risk assessment
Annex 1.1 Guidance on main elements of risk assessment
Annex 1.2 Initial risk assessment
Annex 1.3 Detailed risk assessment

Chapter 2 Health surveillance
2.1 Duty of employers
2.2 Purpose of health surveillance
2.3 Application
2.4 What to do

Chapter 3 Safety Officials
3.1 Introduction
3.2 Employer duties
3.3 The Regulations
3.4 Appointment of Safety Officers
3.5 Election of Safety Representatives
3.6 Safety Committees
3.7 Termination of Appointments
3.8 Support for Safety Officials
3.9 General Advice to Safety Officers
3.10 Advice on compliance with safety requirements
3.11 Powers of Safety Representatives
3.12 Advice to Safety Representatives
3.13 Advice to Safety Committees
3.14 Accident Investigation

Annex 3.1 Checklist for safety officer’s inspection
Annex 3.2 Voluntary statement

Chapter 4 Personal protective equipment
4.1 Introduction
4.2 Employer duties
4.3 Worker duties
4.4 Types of equipment
4.5 Head protection
4.6 Hearing protection
4.7 Face and eye protection
4.8 Respiratory protective equipment
4.9 Hand and foot protection
4.10 Protection from falls
4.11 Body protection
4.12 Protection against drowning

Chapter 5 Safety signs
5.1 Safety Signs
5.2 General
5.3 Role of the Employer
5.4 Workers' responsibilities

**Chapter 6 Means of access and safe movement**

6.1 Means of access
6.2 Use of equipment
6.3 Access for Pilots
6.4 Safe movement
6.5 Entry into dangerous spaces
Annex 6.1 Standards for hold access

**Chapter 7 Work equipment**

7.1 MS and FV (Health and Safety at Work) Regulations
7.2 MS (Guarding of Machinery and Safety of Electrical Equipment) Regulations 1988
7.3 MS (Hatches and Lifting Plant) Regulations
7.4 Hatches
7.5 Lifting Plant
7.6 Testing and examination of lifting equipment
7.7 Marking of lifting equipment
7.8 Certificates and reports
Annex 7.1 Certificates of test and thorough examination
Annex 7.2 Register of ships' lifting appliances and cargo handling gear

**SECTION 2 PERSONAL HEALTH AND SAFETY**

**Chapter 8 Safety Induction**

8.1 General
8.2 Emergency procedures and fire precautions
8.3 Accidents and Medical Emergencies
8.4 Health and hygiene
8.5 Good Housekeeping
8.6 Environmental responsibilities
8.7 Occupational health and safety
8.8 Employer and worker responsibilities

MSCPO1/Ch0/Rev1.01/Page 5
Chapter 9 Fire precautions
9.1 General
9.2 Smoking
9.3 Electrical and other fittings
9.4 Spontaneous combustion
9.5 Machinery spaces
9.6 Galleys

Chapter 10 Emergency procedures
10.1 Action in the event of a fire
10.2 Musters and drills
10.3 Fire drills
10.4 Survival craft drills
10.5 Drills and rescue from dangerous spaces
10.6 Assisting a casualty
10.7 Dangerous goods

Chapter 11 Security on board
11.1 Introduction
11.2 International terrorism
11.3 Stowaways
11.4 Piracy and armed robbery
11.5 General precautions
11.6 Drugs
11.7 Travel Advice Notices

Chapter 12 Living on board
12.1 General
12.2 Health and hygiene
12.3 Working in hot climates
Chapter 13 Safe movement
13.1 General Advice
13.2 Drainage
13.3 Transit Areas
13.4 Lighting
13.5 Guarding of openings
13.6 Watertight doors
13.7 Ship-board vehicles

Chapter 14 Food preparation and handling
14.1 Health and hygiene
14.2 Slips, falls and tripping hazards
14.3 Galley stoves, steamboilers and deep fat fryers
14.4 LPG appliances
14.5 Deep fat frying
14.6 Microwave ovens
14.7 Catering equipment
14.8 Knives, saws, choppers etc
14.9 Refrigerated rooms and store rooms

SECTION 3 WORK ACTIVITIES
Chapter 15 Safe systems of work
15.1 Introduction
15.2 Working aloft and outboard
15.3 Portable ladders
15.4 Cradles and stages
15.5 Bosun's chair
15.6 Working from punts
15.7 Work in machinery spaces
15.8 Boilers
15.9 Unmanned machinery spaces
15.10 Refrigeration machinery

Chapter 16 Permit to work systems
16.1 Introduction
16.2 Permit-to-work systems
Annex 16.1 Suggested minimum headings for inclusion in permits-to-work

Chapter 17 Entering enclosed or confined spaces
17.1 Introduction
17.2 Precautions on entering dangerous enclosed or confined spaces
17.3 Duties and responsibilities of a competent person and of a responsible officer
17.4 Identifying potential hazards
17.5 Preparing and securing the space for entry
17.6 Testing the atmosphere of the space
17.7 Use of control systems
17.8 Procedures and arrangements before entry
17.9 Procedures and arrangements during entry
17.10 Procedures on completion
17.11 Additional requirements for entry into a space where the atmosphere is suspect or known to be unsafe
17.12 Training, instruction and information
17.13 Breathing apparatus and resuscitation equipment

Chapter 18 Boarding arrangements
18.1 Introduction
18.2 Positioning of boarding equipment
18.3 Lighting and safety of movement
18.4 Portable and rope ladders
18.5 Safety nets
18.6 Maintenance of equipment for means of access
18.7 Special circumstances
18.8 Pilot ladders and hoists

Annex 18.1 Construction of means of access
Annex 18.2 Corrosion of accommodation ladders and gangways

Chapter 19 Manual handling
19.1 Introduction
19.2 General
19.3 Role of employers
19.4 Advice to seafarers

Annex 19.1 Factors to be considered
Annex 19.2 Graphic illustrations of manual handling techniques

Chapter 20 Use of work equipment
20.1 Introduction
20.2 Use of tools and equipment
20.3 Hand tools
20.4 Portable power operated tools and equipment
20.5 Workshop and bench machines (fixed installations)
20.6 Abrasive wheels
20.7 Hydraulic/pneumatic/high pressure jetting equipment
20.8 Hydraulic jacks
20.9 Ropes
20.10 Characteristics of man-made fibre ropes
20.11 Work with visual display units (VDUs)
20.12 Personnel lifts and lift machinery
20.13 Laundry equipment

Chapter 21 Lifting plant
21.1 Introduction
Chapter 21 Equipment

21.2 General requirements
21.3 Use of winches and cranes
21.4 Use of derricks
21.5 Use of derricks in union purchase
21.6 Use of stoppers
21.7 Overhaul of cargo gear
21.8 Trucks and other vehicles/appliances
21.9 Overhaul of cargo gear
Annex 21.1 Code of hand signals

Chapter 22 Maintenance

22.1 Introduction
22.2 General
22.3 Floor plates and handrails
22.4 Maintenance of machinery
22.5 Boilers
22.6 Auxiliary machinery and equipment
22.7 Main engines
22.8 Refrigeration machinery and refrigerated compartments
22.9 Steering gear
22.10 Hydraulic and pneumatic equipment
22.11 Electrical equipment
22.12 Radio Equipment — General
22.13 Additional electrical hazards from radio equipment
22.14 Valves and semi-conductor devices
22.15 Work on apparatus on extension runners or on the bench
22.16 Storage Batteries — General
22.17 Lead-acid batteries
22.18 Alkaline batteries

Chapter 23 Hot work

23.1 Introduction
23.2 General
23.3 Personal protective equipment
Chapter 24 Painting
24.1 Introduction
24.2 General
24.3 Preparation and precautions
24.4 Use of paint spraying equipment

Chapter 25 Anchoring, mooring and towing operations
25.1 Introduction
25.2 Anchoring and weighing anchor
25.3 Making fast and casting off
25.4 Mooring to buoys
25.5 Towing

Chapter 26 Hatch covers and access lids
26.1 Introduction
26.2 General
26.3 Mechanical hatch covers
26.4 Non-mechanical hatch covers and beams
26.5 Steel-hinged inspection/access lids
26.6 Access to holds/cargo spaces

Chapter 27 Hazardous substances
27.1 General advice
27.2 Prevention or control of exposure
27.3 Asbestos dust
27.4 Dangerous goods
27.5 Use of chemical agents
27.6 Dry-cleaning operations
27.7 Safe use of pesticides

Chapter 28 Use of safety signs
28.1 Introduction
28.2 Signs and notices
28.3 Occasional signs
28.4 Electrical wiring
28.5 Gas cylinders
28.6 Pipelines
28.7 Portable fire extinguishers
Annex 28.1 International colour coding of signs

SECTION 4 SPECIALIST SHIPS — TO BE PUBLISHED LATER
Chapter 29 Dry cargo ships
Chapter 30 Tankers and other ships carrying bulk liquid cargoes
Chapter 31 Ships serving onshore gas and oil installations
Chapter 32 Ro-Ro Ferries
Chapter 33 Port towage industry

SECTION 5 APPENDICES
Appendix 1 Standards specifications referred to in this code
A Arranged by code chapter
B Arranged by number
Appendix 2 Bibliography
1 SO publications
2 Maritime and Coastguard Agency free publications
3 IMO publications
4 International Chamber of Shipping publications
5 The International Shipping Federation Publication
INTRODUCTION AND REGULATORY FRAMEWORK

General

1. This Code is concerned with improving health and safety on board ship. In the United Kingdom, the Merchant Shipping Act allows the Secretary of State to make regulations, sometimes implementing international standards, to secure the safety of ships and those on them. Much of the Code relates to matters which are the subject of such regulations. In such cases the Code is intended to give guidance as to how the statutory obligations should be fulfilled. However the guidance should never be regarded as superseding or amending regulations.

2. Many regulations lay down specific requirements for standards of safety, equipment or operations. Some of these regulations require that a relevant part of the Code should be consulted and the principles and guidance applied. In these areas, the Maritime and Coastguard Agency would generally accept compliance with the guidance in the Code as demonstrating that the Company, employer or worker had done what was reasonable to comply with the regulations. More details about these regulations are contained in the relevant chapters in Section 1 of this Code.

3. References to British Standards (BS) where there is no corresponding European Norm (EN) contained in this Code are made with the understanding that “an alternative Standard which provides, in use, equivalent levels of safety suitability and fitness for purpose” is equally acceptable.

4. The following regulations also relate to particular aspects of health and safety at work:

- MS (Protective Clothing and Equipment) Regulations S.I 1985 No 1664 - see Chapter 4
- MS (Means of Access) Regulations S.I. 1988 No. 1637 - see Chapter 6
5. The Merchant Shipping and Fishing Vessels (Health and Safety at Work) Regulations 1997, set basic requirements for the management of occupational health and safety on board. Employers are required to identify and assess the risks to the health and safety of workers and anyone else affected by their activities, and to adopt appropriate measures to improve health and safety, in accordance with their findings. Because of the broad scope of these regulations, further advice is given in paragraphs 11 -25 below.

6. The Code provides guidance on safe working practices for many situations that commonly arise on ships, and the basic principles can be applied to many other work situations that are not specifically covered. However it should not be considered a comprehensive guide to safety, and the advice it contains should always be considered in conjunction with the findings of the employer’s assessment of risks, and any information or working instructions provided by the manufacturer supplier, or any other source, should be followed.

7. It is a statutory requirement for copies of the Code to be earned on board UK ships. It should be supplemented by safety manuals, work instructions and other guidance issued by shipping companies for their particular ships, as appropriate.

8. Non-UK ships are not subject to all UK safety regulations, although failure to meet international standards of safety enshrined in those regulations may result in enforcement action while the ship is in UK waters.
9. By 2002, all ships over 500 GRT will be required to operate a Safety Management System complying with the ISM Code. (implementation is phased by broad categories of vessel).

10. Compliance with the ISM Code complements compliance with existing health and safety regulations and use of the guidance in this Code. For example,

- The ISM Code requires that the Company's Safety Management System should "ensure that applicable codes, guidelines and standards recommended by the "Administration" are taken into account. This Code is one such "applicable code", and an ISM audit may consider how the guidance it contains has been implemented.

- The ISM Code requires that the "safety management objectives of the Company should, inter alia... establish safeguards against all identified risks..." This Code will assist the Company in identifying risks and establishing safe practices to safeguard against them.

- The ISM Code requires the Company to "define and document the responsibility, authority and interrelation of all personnel who manage, perform and verify work relating to and affecting safety and pollution prevention". This Code gives advice on the roles of those with particular safety responsibilities, and highlights work areas where specific responsibilities should be allocated to a competent person.

Merchant Shipping and Fishing Vessels (Health and Safety at Work) Regulations

11. It is the duty of employers to protect the health and safety of workers and others so far as is reasonably practicable. The principles which employers must follow to effect this, contained in the regulations, are:

(a) the avoidance of risks, which among other things includes the combating of risks at source and the replacement of dangerous practices, substances or equipment
by non-dangerous or less dangerous practices, substances or equipment;
(b) the evaluation of unavoidable risks and the taking of action to reduce
them;
(c) adoption of work patterns and procedures which take account of the
capacity of the individual, especially in respect of the design of the
workplace and the choice of work equipment, with a view in particular to
alleviating monotonous work and to reducing any consequent adverse
effect on workers' health and safety,
(d) adaptation of procedures to take account of new technology and other
changes in working practices, equipment, the working environment and
any other factors which may affect health and safety,
(e) adoption of a coherent approach to management of the vessel or
undertaking, taking account of health and safety at every level of the
organisation;
(f) giving collective protective measures priority over individual protective
measures;
(g) the provision of appropriate and relevant information and instruction for
workers.

12. Risks inherent in the working environment, must be identified, evaluated
and in consequence measures must be taken such as to remove or minimise
those risks, and so to protect workers and others from those which are
unavoidable.

**Duty holders under the Health and Safety at Work Regulations**

13. It is important that those on whom duties are placed are in a position to
carry them out Employment relationships on board ship can be complex -for
example the master may not be employed by the owner or operator of the
ship, or by the same employer as the crew. There may also be people
working on board such as contractors and sub-contractors, stevedoring
companies and those under franchising arrangements (e.g. in retail or service
outlets) whose employer has no direct responsibility for the safety of the ship.
There is therefore no single "person" on whom it is appropriate to place the
entire "employment" responsibility for health and safety on board.

14. The regulations therefore recognise two levels of "employment" responsibility. The regulations and this Code use the terms "Company" and "employer". The "Company" may of course also be an "employer".

"Company" means the owner of a ship or any other organisation or person such as the manager, or bareboat charterer, who has assumed the responsibility for operation of the ship from the owner;

"employer" means a person by whom a worker is employed under a contract of employment;

"contract of employment" means a contract of employment whether express or implied, and if express, whether oral or in writing;

15. Many aspects of the safety of the ship as a workplace (e.g. the structural soundness of the vessel, the provision of adequate lighting and ventilation, provision of life-saving appliances, and fire-fighting equipment) are under the control of the Company, either directly, or through their contractual arrangements with the owner.

16. Each employer which may include franchise companies operating catering facilities or retail outlets, has control over the occupational health and safety training of the staff employed, and over everyday working practices.

17. The duties for each are explained below.

Duties of employers

18. All employers have a duty to ensure the health and safety of workers and others in accordance with the principles set out in paragraph 10 above. The measures required include:

- safe working places and environment;
- safe plant machinery and equipment;
- health and safety training instruction, supervision and information;
any necessary protective clothing and equipment where risks cannot be
removed by other means;
a health and safety policy,
assessment of the risks to the health and safety of workers’;
information for workers about the significant findings of their risk assessment;
health surveillance of workers as appropriate;
information about their activities and staff to the Company;
appointment of a competent person to assist with the implementation of the
Regulations;
consultation with their workers or elected representatives on health and safety
matters.

Duties of the Company

19. In so far as the Company is an employer on board ship, it has a duty to assess the
risks to workers and others affected by its activities. The Company’s activity is the
operation of the ship, and so it is responsible for co-ordinating the control measures
identified in the risk assessments of all other relevant employers on board, as
appropriate.

20. “The Company”, in addition to its duties as an employer, is required to:
provide information on the special occupational qualifications required to any
employment business supplying them with temporary workers;
consult other employers on board about the health and safety of workers;
co-ordinate health and safety measures between all the employers on board;
provide information to workers about the ship safety systems;
appoint a safely officer (where applicable);
organise the election of safety representatives and safety committee (where
applicable).

21. The Company is also responsible, under other merchant shipping legislation, for
ensuring that emergency equipment is provided and emergency procedures are in
place, including training all personnel in their emergency duties. Recommendations for
basic shipboard health and safety training for
workers new to a ship are given in Chapter 10.

22. As a general rule the master will be the representative of the Company on board ship.

Duties of Workers

23. Workers are required to:
   • take reasonable care for their own health and safety and that of others on board who may be affected by their acts or omissions:
   • co-operate with anyone else carrying out health and safety duties - including compliance with control measures identified during the employer's or Company's evaluation of risk;
   • report any identified serious hazards or deficiencies immediately to the appropriate officer or other authorised person;
   • make proper use of plant and machinery, and treat any hazard to health or safety (such as a dangerous substance) with due caution.

24. Under the Regulations, it is also an offence for any person intentionally or recklessly to interfere with or misuse anything provided in the interests of health and safety.

25. In sections 2 and 3 of this Code, the term "personnel" is used to refer to all workers on board, whether or not they are signed on as members of the crew. Where passengers are also covered, this will be specifically stated.
CHAPTER 1
RISK ASSESSMENT

1.1 Introduction

1.1.1 Employers are required to ensure the health and safety of workers and other persons so far as possible, by the application of certain principles, including the evaluation of unavoidable risks and the taking of action to reduce them.

1.1.2 Specifically, employers are required to make a suitable and sufficient assessment of the risks to health and safety of workers arising in the normal course of their activities or duties, for the purpose of identifying:

(a) groups of workers at particular risk in the performance of their duties, and
(b) the measures to be taken to comply with the employer's duties under the Regulations,

The assessment should extend to others on board ship who may be affected by the acts or omissions of the employer.

1.1.3 Every employer and every self-employed person on board ship is required to inform the Company of any relevant risks to health and safety arising from the conduct of their business.

1.1.4 Employers must ensure that measures are taken to ensure an improvement in the safety and health of workers and other persons in respect of those risks identified by the assessment.

1.1.5 Employers must review the assessment when there is reason to believe that it is no longer valid, and make any necessary changes.

1.1.6 Workers must be informed of any significant findings of the assessment and measures for their protection, and of any subsequent revisions made.
1.1.7 The Company is also required to ensure that anyone working on the ship, whether or not they are directly employed by the Company, is aware of the findings of the Company's risk assessment and of the measures taken for their protection.

1.1.8 This chapter explains the principles of risk assessment in relation to occupational health and safety and provides some guidance on how the assessment and control of risks may be approached.

1.1.9 Regulation of occupational health and safety on board ship is of course not new. Existing safety measures may already provide a high level of safety for workers. For example, well-established procedures, inspections by safety officer; and the use of "permits to work" which control safety conditions, will contribute to the identification of hazards and measures for safe working.

1.1.10 However what is new is the explicit requirement in regulation for employers to adopt the risk assessment approach to occupational health and safety. This means that all work activities should be considered from a risk assessment standpoint.

1.1.11 Employers may adapt existing safety management systems to meet the risk assessment principles set out in section 1.3 and the main elements described in 1.10 taking into account the nature of their operations and the type and extent of the hazards and risks to workers.

1.2 Key terms

1.2.1 Key terms, used frequently in this chapter; are defined below.

a) A **hazard** is a source of potential harm or damage or a situation with potential for harm or damage;

b) **risk** has two elements:
   - the likelihood that a hazard may occur;
   - the consequences of the hazardous event
1.3 Principles of risk assessment

1.3.1 A "risk assessment" is intended to be a careful examination of what in the nature of operations, could cause harm, so that decisions can be made as to whether enough precautions have been taken or whether more should be done to prevent harm. The aim is to minimise accidents and ill health on board ship.

1.3.2 The assessment should first establish the hazards that are present at the place of work and then identify the significant risks arising out of the work activity. The assessment should include consideration of the existing precautions to control the risk, such as permits to work, restricted access, use of warning signs or personal protective equipment.

1.3.3 Any risk assessment must address risks to the health and safety of workers. Advice on assessment in relation to the use of personal protective equipment, the use of equipment and manual handling operations are given in Chapters 4, 19, and 20. In addition, specific areas of work involving significant risk, and recommended measures to address that risk, are covered in more detail in Sections 3 and 4 of the Code.

1.4 Risk assessment in practice

1.4.1 There are no fixed rules about how risk assessment should be undertaken, although section 1.10 gives the main elements. The assessment will depend on the type of ship, the nature of operations and the type and extent of the hazards and risks. The intention is that the process should be simple, but meaningful. The following sections give advice on good practice.

1.5 What should be assessed?

1.5.1 The assessment should cover the risks arising from the work activities of workers on the ship. The assessment is not expected to cover risks which are not reasonably foreseeable.

1.5.2 Employers are advised to record the significant findings of their risk assessment Risks which are found to be trivial, and where no further precautions are required, need not be recorded.
1.6 Who has to carry out the assessment?

1.6.1 In all cases, individual employers have responsibility for assessing the risks to their workers and other persons who may be affected by their activities. The Company will be responsible for co-ordinating the risk assessments covering everyone on the ship, including workers directly employed by itself, taking account of the other employers' assessments.

1.6.2 The process of risk assessment should be carried out by suitably experienced personnel, using specialist advice if appropriate.

1.7 How thorough should the assessment be?

1.7.1 Regulation 7 (1) requires that a suitable and sufficient assessment be made of the risks to the health and safety of workers arising in the normal course of their duties. This requirement to assess risk relates only to risks, which arise directly from the work activity being undertaken, and which have the potential to harm the person(s) actually undertaking that work, or those who may be directly affected by that work. The requirement to assess risk does not extend to any consequential peril to the ship resulting from the particular work activity, nor to any external hazards which may imperil the ship, either of which may cause harm to those on board or to others. These aspects are covered by other regulations.

1.7.2 The assessment of risks must be 'suitable and sufficient'. The process need not be overcomplicated. This means that the amount of effort that is put into an assessment should depend on the level of risks identified and whether those risks are already controlled by satisfactory precautions or procedures to ensure that they are as low as reasonably practicable.

1.8 When to assess?

1.8.1 Risk assessment should be seen as a continuous process. In practice, the risks in the workplace should be assessed before work begins on any task for which no valid risk assessment exists. An assessment must be reviewed
and updated as necessary, to ensure that it reflects any significant changes of equipment or procedure.

1.9 Risk assessment pro-forma

1.9.1 Employers may wish to use a simple pro-forma to record the findings of an assessment, covering, for example:

(a) work activity;
(b) hazard(s);
(c) controls in place;
(d) personnel at risk;
(e) likelihood of harm;
(f) severity of harm;
(g) risk levels (sometimes called "risk factor");
(h) action to be taken following the assessment;
(i) administrative details, e.g. name of assessor, date, etc.

The examples at Annex 1.2 and Annex 1.3 illustrate a two stage approach, the first stage being to identify those risks which require further consideration and the second recording the assessment of those significant risks. This is a suggestion only, and is not intended to be prescriptive.

1.10 Elements of risk assessment

1.10.1 The main elements of the risk assessment process are:

(a) classify work activities
(b) identify hazards and personnel at risk
(c) determine risk
(d) decide if risk is tolerable
(e) prepare action plan (if necessary)
(f) review adequacy of action plan

Further guidance on how each element may be accomplished is in Annex 1.1, which is based on British Standard 8800,
1. Classify work activities

1.1 A useful preliminary to risk assessment is to identify separate work activities, to group them in a rational and manageable way, and to gather necessary information (or collate existing information) about them. Infrequent maintenance tasks, as well as day-to-day operations, should be included. Possible ways of classifying work activities include:

(a) department/location on board ship;
(b) stages of an operation or work routine;
(c) planned and unscheduled maintenance;
(d) defined tasks (e.g. loading/unloading cargo).

1.2 Information required for each work activity might include:
(a) tasks being carried out their duration and frequency;
(b) location(s) where the work is carried out;
(c) who normally/occasionally carries out the tasks;
(d) others who may be affected by the work (e.g. contractors, passengers);
(e) training that personnel have received for the task.

2. Identify hazards

2.1 Asking these three questions should help to identify where there is a hazard:

- Is there a source of harm?
- Who (or what) could be harmed?
- How could harm occur?

Hazards that clearly possess negligible potential for harm should not be documented or given further consideration, provided that appropriate control measures remain in place.
2.2 To help with the process of identifying hazards it may be useful to
categorise hazards in different ways, for example by topic, e.g.:
(a) mechanical
(b) electrical
(c) physical
(d) radiation
(e) substances
(f) fire and explosion.

2.3 A complementary approach may be to develop a prompt list such as:
During work activities could the following hazards exist?
(a) slips/falls on the level;
(b) falls of persons from a height;
(c) falls of tools, materials, etc. from a height
(d) inadequate headroom;
(e) inadequate ventilation;
(f) hazards from plant and machinery associated with assembly,
   commissioning, operation, maintenance, modification, repair and
   dismantling;
(g) hazards from manual handling.
The above list is not exhaustive, and employers could develop their own
'prompt list' taking into account the particular circumstances.

3. Determine risk

3.1 The risk from the hazard may be determined by estimating
   • the potential severity of harm; and
   • the likelihood that harm will occur These two components should
be judged independently

3.2 When seeking to establish potential severity of harm, the following
should be considered:
(a) part(s) of the body likely to be affected;

(b) nature of the harm, ranging from slightly to extremely harmful:

(i) slightly harmful, e.g.:
   - superficial injuries; minor cuts and bruises; eye irritation from dust;
   - nuisance and irritation (e.g. headaches); ill-health leading to temporary discomfort
(ii) harmful, e.g.:
   - lacerations; burns; concussion; serious sprains; minor fractures;
   - musculo-skeletal disorders;
   - deafness; dermatitis; asthma; work related upper limb disorders; ill-health leading to permanent minor disability;

(iii) extremely harmful, e.g.:
   - amputations; major fractures; poisonings; multiple injuries;
   - fatal injuries;
   - occupational cancer; other severely life shortening diseases; acute fatal diseases.

3.3 In order to establish the likelihood of harm the adequacy of control measures already in place should be considered. Legal requirements and guidance in this Code and other safety publications are good guides to adequate control of specific hazards. The following issues should then typically be assessed:

(a) number of personnel exposed;
(b) frequency and duration of exposure to the hazard;
(c) effects of failure of power or water supply;
(d) effects of failure of plant and machinery components and safety devices;
(e) exposure to the elements;
(f) protection afforded by personal protective equipment and its limitations;
(g) possibility of unsafe acts by persons for example, who:
   (i) may not know what the hazards are;
   (ii) may not have the knowledge, physical capacity, or skills to do the work;
   (iii) underestimate risks to which they are exposed;
(iv) underestimate the practicality and utility of safe working methods.

The likelihood of harm can be assessed as highly unlikely, unlikely, or likely

3.4 Any given hazard is more serious if it affects a greater number of people
But some of the more serious hazards may be associated with an occasional
 task carried out by just one person, for example maintenance of inaccessible
 parts of lifting equipment

4. Decide if risk is tolerable

4.1 Table 1 below shows one simple method for estimating risk levels and
deciding whether risks are tolerable. Risks are classified according to their
estimated likelihood and potential severity of harm. However, employers may
wish to develop other approaches according to the nature of their operations.

<table>
<thead>
<tr>
<th>Slightly harmful</th>
<th>Harmful</th>
<th>Extremely harmful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly unlikely</td>
<td>TRIVIAL RISK</td>
<td>TOLERABLE RISK</td>
</tr>
<tr>
<td>Unlikely</td>
<td>TOLERABLE RISK</td>
<td>MODERATE RISK</td>
</tr>
<tr>
<td>Likely</td>
<td>MODERATE RISK</td>
<td>SUBSTANTIAL RISK</td>
</tr>
</tbody>
</table>

Note. Tolerable here means that the risk has been reduced to the lowest level that is
reasonably practicable

5. Prepare risk control action plan

5.1 Having determined the significant risks, the next step is to decide what
action should be taken to improve safety, taking account of precautions and
controls already in place.

5.2 Risk categories form the basis for deciding whether improved controls are
required and the timescale for action. Table 2 suggests a possible simple
approach. This shows that the effort made to control risk should reflect the
seriousness of that risk
### Table 2.

<table>
<thead>
<tr>
<th>ACTION AND TIMESCALE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIVIAL</td>
<td>No action is required and no documentary records need be kept.</td>
</tr>
<tr>
<td>TOLERABLE</td>
<td>No additional controls are required. Consideration may be given to a more cost effective solution or improvement that imposes no additional cost burden. Monitoring is required to ensure that the controls are maintained.</td>
</tr>
<tr>
<td>MODERATE</td>
<td>Efforts should be made to reduce the risk, but the costs of prevention should be carefully measured and limited. Risk reduction measures should be implemented within a defined time period. Where the moderate risk is associated with extremely harmful consequences, further assessment may be necessary to establish more precisely the likelihood of harm as a basis for determining the need for improved control measures.</td>
</tr>
<tr>
<td>SUBSTANTIAL</td>
<td>Work should not be started until the risk has been reduced. Considerable resources may have to be allocated to reduce the risk. Where the risk involves work in progress, urgent action should be taken.</td>
</tr>
<tr>
<td>INTOLERABLE</td>
<td>Work should not be started or continued until the risk has been reduced. If it is not possible to reduce the risk even with unlimited resources, work has to remain prohibited.</td>
</tr>
</tbody>
</table>

*Note: Tolerable here means that the risk has been reduced to the lowest level that is reasonably practicable*.
(e) give precedence to measures that protect everyone;
(f) if necessary, use a combination of technical and procedural controls;
(g) introduce or ensure the continuation of planned maintenance, for example, of machinery safeguards;
(h) ensure emergency arrangements are in place;
(i) adopt personal protective equipment only as a last resort, after all other control options have been considered.

5.5 In addition to emergency and evacuation plans (see Chapter 10), it may be necessary to provide emergency equipment relevant to the specific hazards.

6. Review adequacy of action plan

6.1 Any action plan should be reviewed before implementation, typically by asking:
(a) will the revised controls lead to tolerable risk levels?
(b) are new hazards created?
(c) what do people affected think about the need for, and practicality of, the revised preventive measures?
(d) will the revised controls be used in practice, and not ignored in the face of, for example, pressures to get the job done?
INITIAL RISK ASSESSMENT

<table>
<thead>
<tr>
<th>Task ID number</th>
<th>Work process/action undertaken in area</th>
<th>Hazards associated with activity</th>
<th>Controls already in place</th>
<th>Significant risk identified</th>
<th>Further assessment required (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Declaration:
Where no significant risk has been listed, we as assessors have judged that the only risks identified were of an inconsequential nature and therefore do not require a more detailed assessment.

Signed

MSCP01/Ch1/Rev1.01/Page 13
Annex 1.3

DETAILED RISK ASSESSMENT

<table>
<thead>
<tr>
<th>Ship name</th>
<th>Record number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Assessment date  Last assessment date:

Work activity being assessed

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Description of identified hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard No.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree/likelihood</th>
<th>Slightly harmful</th>
<th>Harmful</th>
<th>Extremely harmful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly unlikely</td>
<td>Trivial risk</td>
<td>Tolerable risk</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Unlikely</td>
<td>Tolerable risk</td>
<td>Moderate risk</td>
<td>Substantial risk</td>
</tr>
<tr>
<td>Likely</td>
<td>Moderate risk</td>
<td>Substantial risk</td>
<td>Intolerable risk</td>
</tr>
</tbody>
</table>

To assess the risk arising from the hazard:
1. Select the expression for likelihood which most applies to the hazard
2. Select the expression for degree of harm which most applies to the hazard
3. Cross reference using the above table to determine the level of risk

<table>
<thead>
<tr>
<th>Additional control measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard no.</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

People at risk:

Existing control measures:

<table>
<thead>
<tr>
<th>Hazard no.</th>
<th>Control measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Additional comments:

Assessment review date: ____________________________

MSCP01/Ch1/Rev1.01/Page 14
CHAPTER 2
HEALTH SURVEILLANCE

2.1 Duty of employers

2.1.1 Employers must provide workers with such health surveillance as is appropriate taking into account the risks to their health and safety which are identified by the assessment undertaken in accordance with the regulations.

2.2 Purpose of health surveillance

2.2.1 Health surveillance is a means of identifying early signs of ill health caused by occupational hazards so that action can be taken to protect individuals at an early stage from further harm. For example:

- where a worker’s exposure to a hazardous substance is approaching the agreed limit, the worker should be removed from exposure before any harm is done;
- if symptoms of minor ailments (e.g. skin rash) are detected, action should be taken to prevent them becoming major health problems.

2.2.2 In addition, the results of health surveillance can provide a means of:
(a) checking the effectiveness of health control measures;
(b) providing feedback on the accuracy of health risk assessment;
(c) identifying and protecting individuals at increased risk

2.2.3 Health surveillance is not a substitute for measures to control risks to health and safety. Control measures should always be the first consideration to reduce risk. Nor is it the same as medical examinations which are intended to assess fitness for work (for example pre-employment, sickness resumption or periodic examinations). However where relevant, health surveillance should be conducted, for example at pre-employment assessment, where a base-line reference can usefully be established.
2.3 Application

2.3.1 Health surveillance should be introduced where risk assessment (see Chapter 1) identifies that:
   (a) a particular work activity may cause ill health;
   (b) an identifiable disease or adverse health condition is related to the work;
   (c) recognised testing methods are available for early detection of an occupational disease or condition - e.g. audiometry, skin inspection where dermatitis is a hazard;
   (d) there is a reasonable likelihood that a disease or condition may occur in relation to particular working conditions;
   (e) surveillance is likely to further the protection of workers' health

2.3.2 All workers should be subject to whatever health surveillance is appropriate for the work activities they are involved in. Examples of circumstances in which it may be useful include:
   - exposure to hazardous substances;
   - working with vibrating tools;
   - exposure to high levels of noise,
   - use of substances known to cause dermatitis (e.g. solvents); and
   - exposure to certain dusts (e.g. asbestos);

2.4 What to do

2.4.1 Once it is decided that health surveillance is appropriate, it should be maintained whilst the worker remains exposed to the hazard(s) in question. A worker's health surveillance records should where possible be retained, even when the worker changes employment.

2.4.2 Health surveillance may involve one or more of the following, as applicable:
   (a) inspection of readily detectable conditions (e.g. skin damage) by a person acting within the limits of their training and experience,
(b) enquiries about symptoms;
(c) hearing checks (audiometry);
(d) medical examinations or company health checks;
(e) testing blood or urine samples.

2.4.3 The frequency of such checks should be determined either on the basis of suitable general guidance (e.g. skin inspection for skin damage) or on the advice of a qualified occupational health practitioner. The workers concerned could be given an explanation of the purpose of health surveillance and an opportunity to comment on the proposed frequency of such health surveillance procedures, either directly or through their safety representatives.

2.4.4 Where medical surveillance is required, and it is necessary to take samples or record other personal information, it is essential that confidentiality is maintained in respect of individual health records containing clinical information.
CHAPTER 3
SAFETY OFFICIALS

3.1 Introduction

3.1.1 Every person on board has a responsibility for safety.

- The Company is responsible for ensuring the overall safety of the ship and that safety on board is properly organised and co-ordinated.

- The master has the day to day responsibility for the safe operation of the ship and the safety of those on board.

- Each employer is responsible for the health and safety of his workers.

- Heads of department are responsible for health and safety in their own department.

- Each officer/manager is responsible for health and safety for those they supervise and others affected.

- Each individual worker is responsible for his own health and safety and that of anyone affected by what he does or fails to do.

Under Merchant Shipping legislation, specific responsibilities are also laid on those with designated roles in ensuring the safety of those on the ship. In this chapter, those with a designated safety role on board are referred to as "safety officials", and this term includes safety officers, safety representatives and other members of safety committees.

3.1.2 The development of a "safety culture" and the achievement of high standards of safety depend on good organisation and the whole-hearted support of management and all personnel. Those with specific safety responsibilities are more likely to perform well when management is clearly committed to health and safety. It is also important that procedures are in place so that all personnel can co-operate and participate in establishing and maintaining safe working conditions and practices.

3.1.3 Sections 3.2, 3.8.5 and 3.13 of this chapter apply equally on all ships, whether or not safety officials are appointed or elected by law.
3.1.4 Sections 3.3 - 3.12 however apply only where safety officials are appointed or elected as required by law. The information and guidance here is designed to assist them in their primary objective of reducing the number of deaths and injuries, and to advise Companies and masters how to fulfill their duty to assist them.

3.2 Employer duties

3.2.1 Every employer is required to appoint one or more competent persons to promote health and safety in their undertaking. On board some large ships, where there are personnel working who are employed by several different employers, each employer must appoint (a) competent person (s). They do not have to work on the ship themselves, but to be "competent" for the task they should have a knowledge of the duties undertaken by those for whom they are responsible, and should ensure that any specific risks encountered as a result of that particular working environment are dealt with appropriately - e.g. by checking that the company has adequate safety procedures for all on board, and by co-ordinating risk assessments with the company.

3.2.2 The employer may "appoint" himself where, in a small organisation, there is no one else available to take on this responsibility. Alternatively, he may employ someone from outside his own undertaking to advise on health and safety, provided that person is competent. This requirement applies whether or not a safety officer is appointed for the ship by the Company.

3.2.3 The employer must provide the competent person (s) with all relevant information they need to do their job. This would include a copy of the employer's safety policy and risk assessments, information about the duties of personnel, and any information provided by other employers about risks and safety procedures in shared work-places.

3.2.4 The employer is required to consult workers or their elected representatives on health and safety matters, in particular.
(a) arrangements for the appointment of a competent person;

(b) the findings of the risk assessment;

(c) arrangements for health and safety training; and

(d) the introduction of new technology.

The matters to be discussed might also include selection of work equipment and/or protective clothing and equipment, installation of safety signs and follow-up to accidents and other incidents.

3.2.5 Workers or their elected representatives must be allowed to make representations to their employer about health and safety matters without disadvantage to themselves. Such representations should be given adequate consideration, perhaps in conjunction with the safety committee, and any agreed measures to improve safety implemented as soon as reasonably practicable.

3.2.6 It is also the employer's responsibility to ensure that workers or their elected representatives have access to relevant information and advice about health and safety matters from inspection agencies and health and safety authorities, and, from their own records, about accidents, serious injuries and dangerous occurrences.

3.2.7 Employers must provide elected representatives adequate time off normal duties, without loss of pay, to enable them to exercise their rights and carry out their function effectively. Workers' safety representatives must not suffer any disadvantage for undertaking this function.

Company duties

3.3 The Regulations

3.3.1 The regulations dealing with safety officials lay duties on the Company for the appointment of ships' safety officers (see sections 3.4 and 3.10 of this Code), the appointment of a safety committee (section 3.6) and the election of safety representatives with specified powers (section 3.5).
3.3.2 Regulations 15-18 apply only to ships (other than fishing vessels) on which more than five workers are employed.

3.3.3 The Secretary of State may grant ad hoc exemptions to specific ships or classes of ships subject to any relevant special conditions. This is to allow different arrangements to be made in cases where the requirements of the Regulations would be difficult to apply. An example might be a multi-crew ship with alternate crews working on a regular ship basis. In considering a request for exemption, the Maritime and Coastguard Agency would require to be satisfied that alternative arrangements existed, and would make it a condition of the exemption that these were continued.

3.3.4 Regulation 17, governing arrangements for the election of safety representatives, does not apply where there are existing agreed arrangements under land-based legislation (The Safety Representatives and Safety Committee Regulations 1977).

3.3.5 Even where there is no statutory requirement for the election of safety representatives and safety committees, the employer is required to consult workers on health and safety issues - see paragraph 18 of the Regulatory Framework.

3.4 Appointment of Safety Officers

3.4.1 On every sea-going ship on which more than five workers are employed, the Company is required to appoint a safety officer. The master must record the appointment of a safety officer - this should be in the official logbook.

3.4.2 The safety officer is the safety adviser aboard the ship and can provide valuable assistance to the Company and to individual employers in meeting the statutory responsibilities for health and safety. He should have attended a suitable Safety Officer's training course. He should be familiar with the principles and practice of risk assessment, and should be available to advise...
those preparing and reviewing risk assessments. It is recognised that, where
the safety officer also has other responsibilities (e.g. chief officer) he may well
carry out risk assessments himself. However, the general principle is that the
safety officer takes an independent view of safety on behalf of the Company.

3.4.3 Although not prohibited by the Regulations the appointment of the
master as the safety officer is not generally advisable. This is because the
safety officer is required amongst his other duties to make representations
and recommendations on health and safety to the master.

3.4.4 If possible, the Company should avoid appointing as safety officer
anyone to whom the master has delegated the task of giving medical
treatment. This is because one of the duties of the safety officer is to
investigate incidents, and he would not be able to give proper attention to this
function while providing medical treatment for any casualties.

3.5 Election of Safety Representatives

3.5.1 On every ship on which more than five workers are employed, the
Company must make arrangements for the election of safety representatives.
The regulations specify that no safety representative may have less than 2
years consecutive sea service since attaining the age of 18, which in the case
of a safety representative on board a tanker shall include at least 6 months
service on such a ship.

3.5.2 The Company must make rules for the election of safety representatives
by the workers on board and cannot disqualify particular persons. It is
recommended that the employer should consult with any seafarers’
organisation representing his employees when making these rules. The
master should organise the election of a safety representative within 3 days of
being requested to do so by any two persons entitled to vote.

3.5.3 The number of safety representatives who should be elected will vary
according to the size of a crew. The following ratios are recommended:
6-15 crew 1 elected by officers and ratings together
16+ crew 1 elected by the officers and one elected by the ratings
Over 30 ratings 1 elected by the officers and 3 by the ratings (i.e. one each from the deck, engine room and catering departments, general purpose ratings being included in the deck department)

3.5.4 The master must record the election or appointment of every safety representative in writing - this should be either in the official logbook or in the minutes of safety committee meetings (see below)

3.5.5 When there is a substantial change in those working on board, the master should remind personnel of their right to elect new safety representatives

3.6 Safety Committees

3.6.1 Once safety representatives have been elected, the Company must appoint a safety committee The committee must be chaired by the master; and members will include, as a minimum, the safety officer and all elected safety representatives If practical, any competent person appointed by employers other than the Company, should be invited to attend

3.6.2 It is desirable that there should be a safety committee on every ship with more than five workers, although the statutory requirement only exists on those ships where safety representatives are elected

3.6.3 The master must record the appointment of a safety committee in writing - this should normally be in the official logbook or minutes of the committee's meetings

3.6.4 The composition of a safety committee recommended above does not preclude the appointment of other temporary members. However, the
committee should be kept compact enough to maintain the interest of members and enable it to function efficiently. Where possible, the relevant shore managers with responsibility for safety on board may attend safety committee meetings on board ship and should in any event see the committee's minutes. On short-haul ferries on which different crews work a shift system a scheme of alternate committee members may be adopted to secure proper representation.

3.6.5 Where large numbers of personnel work in separate departments (e.g. passenger ship galleys and restaurants), departmental sub-committees should be formed on lines similar to those of the main committee and under the chairmanship of a senior member of the department who should serve as a member of the main safety committee in order to report the views of the sub-committee.

3.6.6 It is preferable to appoint as secretary someone other than a safety official, as officials need to concentrate on the discussion rather than on recording it.

3.7 Termination of Appointments

3.7.1 A safety officer's appointment terminates as soon as he ceases to be employed in the particular ship or the employer terminates the particular appointment.

3.7.2 A safety representative cannot have his appointment terminated by the employer or master. He can resign or the crew can elect another in his place. Otherwise he remains a safety representative for as long as he serves on the ship.

3.7.3 A safety committee may be disbanded only when there is no longer an elected safety representative on board. A safety committee can, however, operate whether or not there is an elected safety representative.
3.8 Support for Safety Officials

3.8.1 The Company and master have a duty to facilitate the work of any person appointed as a safety official, providing them with access to a copy of this Code and any relevant legislation, merchant shipping notices and other information, including

(a) findings of the risk assessment and measures for protection in place,
(b) any other factors affecting the health and safety of those working on the ship,
(c) details of fire-fighting first aid and other emergency procedures.

3.8.2 Relevant information might include that concerning dangerous cargoes, maintenance work, the hazards of machinery, plant, equipment, processes and substances in use, and appropriate precautions. This will require co-ordination with all employers to obtain information about the findings of their risk assessment.

3.8.3 The Company and master, in co-operation with the employer, must also ensure that safety officials have the necessary resources and means, and allow them sufficient time off from their duties without loss of pay, to enable them to fulfil their functions or undertake any necessary health and safety training. This will include providing any necessary accommodation and office supplies.

3.8.4 Some training may be arranged on board, but to fulfil their function as shipboard safety adviser properly, safety officers should undertake a proper training course for the appointment.

3.8.5 On a ship where no safety officer is appointed under the regulations, the Company must ensure that a record is kept of all incidents resulting in death, major or serious injury and every dangerous occurrence. This record must be available on request to any elected representative, and any person duly authorised by the Secretary of State.
3.8.6 Employers must enable workers or their elected representatives to make representations about health and safety, and should also accept representations or recommendations from the safety officer. The Company and master will also receive representations from competent persons appointed under Regulation 15, safety officers and safety committees. These should be carefully considered and any agreed measures should be implemented as soon as reasonably practicable.

3.8.7 The reaction to such representations will be seen as a measure of commitment to health and safety on board. All representations received, from whichever source, should be considered carefully. If there is likely to be a delay in giving an answer then whoever has made the representations should be informed as soon as possible. Safety suggestions should be implemented, when it is feasible and reasonable to do so, as soon as reasonably practicable. If suggestions for health and safety measures are rejected, reasons should be given in writing. It is a good practice to acknowledge all suggestions put forward, whether or not a written response is needed.

3.8.8 It is most important that the master takes a close interest in the work of the safety officials on board. He should check that the safety officer is fulfilling his duties effectively, but should also give encouragement and support. The master is in much the best position to ensure that the committee works successfully, by encouraging participation and co-operation from all members.

3.8.9 The Accident Reporting regulations govern when an incident should be reported to the Marine Accident Investigation Branch of the Department of the Environment, Transport and the Regions (MAIB). It may sometimes be appropriate for companies to inform other ships in the fleet of an incident, and give appropriate recommendations on action to be taken, in accordance with the Company’s safety management system.
Duties of Safety Officers

3.9 General advice to Safety Officers

3.9.1 It is very important that the safety officer maintains a good working relationship with safety representatives - for example, inviting the relevant safety representatives to join him for the regular inspection of each part of the ship, or while carrying out an investigation, consulting them on safety matters and arrangements, and in particular on any follow-up action proposed.

3.9.2 The safety officer’s relationship with the safety committee is rather different since he is both a member of the committee and also to some extent subject to its direction. A committee has the right to inspect any of the records which a safety officer is required by law to keep, and has the power to require the safety officer to carry out any health or safety inspections considered necessary.

3.10 Advice on compliance with safety requirements

3.10.1 The safety officer is required by the Regulations to try to ensure compliance with the provisions of this Code and any health and safety guidance and instructions for the ship.

3.10.2 The safety officer’s role should be a positive one, seeking to initiate or develop safety measures before an incident occurs rather than afterwards. He should:

• be on the lookout for any potential hazards and the means of preventing incidents;
• try to develop and sustain a high level of safety consciousness among the crew so that individuals work and react instinctively in a safe manner and have full regard to the safety not only of themselves but also of others. The objective is to become the ship’s adviser on safety to whom the master, officers and all personnel will naturally turn for advice or help on safe working procedures.
• where unsafe practice is observed, approach the individual or responsible officer concerned to suggest improvements in his method of working or use the safety committee to discuss examples of dangerous or unsafe practices in a particular area. If this brings no improvement, the safety officer should consider approaching the head of department or as a last resort, the master to use his influence.
• ensure that each worker joining the ship is instructed in all relevant health and safety arrangements, and of the importance attached to them before starting work. A suggested outline for this induction is given in Chapter 8.
• where possible, ensure that arrangements are made for each new entrant to work with a crew member who is himself thoroughly safety conscious.
• remind experienced seamen joining the ship for the first time of the importance of a high level of safety consciousness and of setting a good example to less experienced personnel.

3.10.3 He should also promote safety on board, subject to the agreement of the master by:
(a) arranging the distribution of booklets, leaflets and other advisory material on safety matters.
(b) supervising the display of posters and notices, replacing and renewing them regularly
(c) arranging for the showing of films of safety publicity and, where appropriate, organise subsequent discussions on the subjects depicted.
(d) encouraging members of the crew to submit ideas and suggestions for improving safety and enlist their support for any proposed safety measures which may affect them (the person making a suggestion should always be informed of decisions reached and any action taken).
(e) effective communication of new requirements or advice in relevant shipping legislation, Marine Notices and Company and ship's rules and instructions relating to safety at work about the ship.
Investigation of accidents and dangerous occurrences

3.10.4 The safety officer has a duty to investigate notifiable accidents or dangerous occurrences affecting persons on board ship or during access, as well as potential hazards to health and safety and any reasonable complaints made by any personnel, and to make recommendations to the master. It is good practice to record and investigate as appropriate all incidents reported by personnel or passengers.

3.10.5 Additional health or safety investigations or inspections may be commissioned by the safety committee.

Safety Inspections

3.10.6 The Regulations require the safety officer to carry out health and safety inspections of each accessible part of the ship at least once every three months, or more frequently if there have been substantial changes in the conditions of work.

3.10.7 "Accessible" should be taken as meaning all those parts of the ship to which any member of the crew has access without prior authority.

3.10.8 Deciding whether "substantial changes in the conditions of work" have taken place is a matter of judgement. Changes are not limited to physical matters such as new machinery but can also include changes in working practices or the presence of possible new hazards. A record should be kept of all inspections.

3.10.9 It is not necessary to complete an inspection of the whole ship at one time, as long as each accessible part of the ship is inspected every 3 months, it may be easier to get quick and effective action on recommendations arising out of an inspection, if one section is dealt with at a time. When inspecting a section the safety officer should be accompanied by the officer or petty officer responsible for it.
3.10.10 Before beginning any inspection, previous reports of inspections of the particular section should be read, together with the recommendations made and the subsequent action taken. The control measures identified in any relevant risk assessment should also be read, and compliance with them checked during the inspection. Any recurring problems should be noted, and recommendations for action which have not been put into place. It is important, however, not to allow the findings of previous inspections to prejudice any new recommendations.

3.10.11 It is not possible to give a definitive checklist of everything to look for but safe access, the environment and working conditions are major items. Suggestions for consideration on these particular issues are given in Annex 31.

3.10.12 The safety officer is required to make representations and, where appropriate, recommendations to the master and through him to the Company about any deficiency in the ship in respect of statutory requirements relating to health and safety, relevant Merchant Shipping Notices and the provisions of this Code.

3.10.13 In order to fulfil this function properly, the safety officer needs to be conversant with the appropriate regulations. The introduction of new regulations or of amendments to existing regulations will be announced in Merchant Shipping Notices issued by the Maritime and Coastguard Agency.

Record of accidents and dangerous occurrences

3.10.14 The safety officer must maintain a record of all accidents and dangerous occurrences (see 31410-12) On a ship where no safety officer is appointed, this duty falls to the Company. These records must be made available on request to any safety representative, the master or to any person duly authorised by the Secretary of State.
Duty to stop dangerous work

3.10.15 The Safety Officer has a duty to stop any work which he reasonably believes may cause a serious accident and immediately to inform the master (or his deputy) who is responsible for deciding when work can safely be resumed.

3.10.16 This does not apply to an emergency action to safeguard life even though that action itself may involve a risk of life. The safety officer is not required by these Regulations to take any of the actions described in 3.10.1, 3.10.4, 3.10.5, 3.10.6, 3.10.12, 3.10.14 and 3.10.15 at a time when emergency action to safeguard life or the ship is being taken.

3.11 Powers of Safety Representatives

3.11.1 Unlike the safety officer; the safety representative has powers not duties, although membership of the safety committee imposes certain obligations.

3.11.2 Safety representatives may, with the agreement of the safety officer, participate in investigations and inspections carried out by the safety officer, or, after notifying the master or his deputy, may carry out their own investigation or inspection.

3.11.3 They may also make representations to the employer on potential hazards and dangerous occurrences, and to the master or employer on general health and safety matters, including the appointment of a competent person under regulation 15, the findings of the risk assessment, health and safety training, and the introduction of new technology.

3.11.4 They may request, through the safety committee, that the Safety Officer undertakes an investigation and reports back to them, and may inspect any of the records the Safety Officer is required to keep under the Regulations. They should ensure that they see all incident reports submitted to the MAIB under the Accident Reporting regulations (see above).
3.12 Advice to Safety Representatives

3.12.1 Safety representatives should be familiar with all the safety regulations listed in the Regulatory Framework at the beginning of this Code.

3.12.2 The effectiveness of safety representatives will depend to a large extent on good co-operation between them, the Company, other employers, the master heads of department and safety officer.

3.12.3 Safety representatives should:

- put forward their views and recommendations in a firm but reasonable and helpful manner;
- be sure of the facts;
- be aware of the legal position;
- be conscious of what is reasonably practicable.

3.12.4 Having made recommendations, they should request to be kept informed of any follow-up actions taken, or the reasons why such action was not possible.

3.12.5 If a safety representative finds that his efforts are being obstructed, or he is denied facilities, he should bring the matter to the attention of the safety officer or of the master through the safety committee. It should be the aim to settle any difficulties on board ship or through the employer. If this proves impossible the problem should be referred to the trade union or to the Maritime and Coastguard Agency.

3.13 Advice to Safety Committees

3.13.1 The safety committee is a forum for consultation between the master safety officials and others of matters relating to health and safety. It may be used by employers for consultation with the company and employees, its effectiveness will depend on the commitment of its members, in particular that of the master. Because of its broad membership, and with
the master as its chairman, the committee has the means to take effective action in all matters which it discusses other than those requiring the authorisation of the Company and employer

3.13.2 The frequency of meetings will be determined by circumstances but as a general guideline, the committee should meet about every 4-6 weeks.

3.13.3 An agenda (together with any associated documents and papers, and the minutes of the previous meeting) should be circulated to all committee members in sufficient time to enable them to digest the contents and to prepare for the meeting.

3.13.4 If there is a particularly long agenda, it may be better to hold two meetings in fairly quick succession rather than one long one. If two meetings are held, priority at the first meeting should, of course, be given to the more urgent matters.

3.13.5 The first item on the agenda should always be the minutes of the previous meeting. This allows any correction to the minutes to be recorded and gives the opportunity to report any follow-up action taken.

3.13.6 The last item but one should be "any other business". This enables last minute items to be introduced, and prevents the written agenda being a stop on discussion.

3.13.7 The last item on the agenda should be the date, time and place of the next meeting.

3.13.8 Minutes of each meeting should record concisely the business discussed and conclusions reached. A copy should be provided to each committee member. Normally, they should be agreed as a true record at the next meeting, or amended if necessary, under the first item of the agenda (see 3.13.5).
3.13.9 A minutes file or book should be maintained, together with summary of recommendations recording conclusions reached, in order to provide a permanent source of reference and so ensuring continuity should there be changes in personnel serving on the committee.

3.13.10 All personnel should be kept informed on matters of interest which have been discussed, for example by posting summaries or extracts from the minutes on the ship's notice boards. Suggestions may be stimulated by similarly posting the agenda in advance of meetings.

3.13.11 Relevant extracts of agreed minutes should be forwarded through the master to the Company and, where appropriate, individual employers, even when the matters referred to have already been taken up with them.

3.14 Accident Investigation

3.14.1 The investigation of accidents and incidents plays a very important part in safety. It is by the identification and study of accidents principally through the MAIB's accident reporting system that similar events may be prevented in future.

3.14.2 The statutory requirements regarding accident reporting are set out in the Merchant Shipping (Accident Reporting and Investigation) Regulations 1994, and MSN No.1584 provides guidance on how to comply with them.

3.14.3 The master is responsible for the statutory reporting of accidents and dangerous occurrences covered by the Regulations. Where a safety officer is on board, however it is his statutory duty to investigate every such incident and it is expected that the master will rely extensively on the results and record of the safety officer's investigation when completing his report. The various stages of the typical investigation might proceed as follows. (a) When an incident occurs priority must be given to the safety of the injured and of those assisting them, and to the immediate safety of the
area. When sufficient help is available, however the safety officer should, if possible; avoid involvement with the rescue operation and concentrate on establishing the immediate facts concerning the incident.

(b) First he should record the names - and addresses in case of non-crew personnel - of all those present in the vicinity of the incident. Not all are likely to be witnesses to the actual incident but this can be ascertained later. He should then note and mark the position of the injured, and the use and condition of any protective clothing or equipment or of any tools etc. likely to have been in use. Possession should be taken of any portable items which might have some relevance to the investigation. Sketches and photographs are often useful.

(c) When the injured have been removed, the safety officer should carry out a more detailed examination at the scene of the incident, watching out for any changes which might have occurred since the incident and any remaining hazards.

3.14.4 The points to look out for will depend on the circumstances. For example after an incident during boarding, the following should be noted:

- compliance with control measures identified by the risk assessment,
- the type of access equipment in use;
- the origin of the access equipment, e.g. ship’s own, provided from shore etc;
- the condition of the access equipment itself, noting particularly any damage such as a broken guard-rail or rung. The position and extent of any damage should be examined so that it may be compared with witnesses’ statements, and it should be noted whether the damage was present before, or occurred during or as a result of the incident (if the damage was present before the incident it might have been potentially dangerous but it may not necessarily have been a factor in the particular incident);
- any effect of external factors on the condition of the equipment, e.g. ice, water or oil on the surface;
- the deployment of the equipment, i.e. the location of the quayside and...
shipboard ends of the equipment;
• the rigging of the equipment, the method of securing, the approximate angle of inclination;
• the use of ancillary equipment (safety net, lifebuoy and lifeline, lighting);
• the safety of shipboard and quayside approaches to the equipment, e.g. adequate guard-rails, obstructions and obstacles etc;
• any indication of how the incident might have happened, but remember that subsequent interviews with witnesses must be approached with an open mind;
• weather conditions;
• distances where these are likely to be helpful or relevant

3.14.5 Interviews of witnesses should take place as soon as possible after the incident when memories are still fresh. There may be people who were not actually witnesses but who may nevertheless have valuable contributions to make, for example a crewman who was present when an order was given. These persons should not be overlooked. If it is not possible for some reason to interview a particular person, he should be asked to send the safety officer his own account of the incident

3.14.6 The actual interview should be carried out in an informal atmosphere designed to put the witness at his ease. To start with, the safety officer should explain the purpose of the interview and obtain some details of the witness’s background. It is important to keep any personal bias out of the interview. The witness should be asked to relate the event in his own way with as few interruptions as possible. The accuracy of what is said should be tested. There may, for example, be discrepancies between the account of one witness and those of other witnesses, between different parts of a statement, or with the safety officer’s own observations, which he may want to query. Leading questions implying an answer should be avoided, as should simple questions requiring only a yes/no answer which save the witness from thinking about what he is saying. Finally, the safety officer should go over the statement with the witness to ensure that it has been accurately recorded.
3.14.7 Statements for signature by the witness should be prepared as quickly as possible but, if the witness changes his mind about signing a statement, it should be annotated by the safety officer that it has been prepared on the basis of an interview with the witness who had subsequently refused to sign it or comment further. Where the witness asks for extensive alterations to the original statement a fresh statement may have to be prepared, but the original statement should be annotated by the safety officer and retained.

3.14.8 It is helpful to adopt a standard format for statements by incident witnesses. A suggested format is at Annex 3.2

3.14.9 It is worth emphasising the importance of distinguishing between facts and opinions. Facts can normally be supported by evidence whereas opinions are personal beliefs. An investigation must depend on the facts gathered but opinions can be helpful in pursuing a particular line of enquiry and should not be disregarded.

3.14.10 Any record of incidents and dangerous occurrences (see 31014 above) should contain at least the following information:
   - details of incidents/ dangerous occurrences/ investigations/ complaints/ inspections,
   - date;
   - persons involved;
   - nature of injuries suffered;
   - all statements made by witness;
   - any recommendations/ representations;
   - any action taken.

3.14.11 Additionally it is suggested that it should contain the following:
   - list of witnesses, addresses, positions and occupations;
   - whereabouts of original signed statement made by witnesses;
• date accident/ dangerous occurrence reports sent to MAIB if applicable;
• list of items collected, why and where stored;
• index.

3.14.12 The record should be kept with the ship since it must be made available on request to the safety representative and safety committee, if any. It is also a necessary item of reference for safety officers on board the ship. If the ship is sold and remains on the UK register, the record should be transferred with the ship. Where the ship becomes a foreign ship the record should be retained by the original owners.
CHECKLIST FOR SAFETY OFFICER’S INSPECTION

The following are examples of questions the safety officer should consider. This is not intended to be an exhaustive list, and should be varied according to the particular design or conditions on a particular ship.

MEANS OF ACCESS/SAFE MOVEMENT

• Are means of access, if any, to the area under inspection (particularly ladders and stairs), in a safe condition, well lit and unobstructed?
• If any means of access is in a dangerous condition, for instance when a ladder has been removed, is the danger suitably blocked off and warning notices posted?
• Is access thorough the area of inspection both for transit and working purposes clearly marked, well lit, unobstructed and safe?
• Are fixtures and fittings over which seamen might trip or which project, particularly overhead, thereby causing potential hazards, suitably painted or marked?
• Is any gear which has to be stowed within the area, suitably secured?
• Are all guard-rails in place, secure and in good condition?
• Are all openings through which a person could fall, suitably fenced?
• If portable ladders are in use, are they properly secured and at a safe angle?

WORKING ENVIRONMENT

• Is the area safe to enter?
• Are lighting levels adequate?
• Is the area clear of rubbish, combustible material, spilled oil etc?
• Is ventilation adequate?
• Are members of the crew adequately protected from exposure to noise where necessary?
Are dangerous goods and substances left unnecessarily in the area or stored in a dangerous manner?

Are loose tools, stores and similar items left lying around unnecessarily?

**WORKING CONDITIONS**

- Is machinery adequately guarded where necessary?
- Are any necessary safe operating instructions clearly displayed?
- Are any necessary safety signs clearly displayed?
- Are permits-to-work used when necessary?
- Are crew working in the area wearing any necessary protective clothing and equipment?
- Is that protective clothing and equipment in good condition and being correctly used?
- Is there any evidence of defective plant or equipment and if so what is being done about it?
- Is the level of supervision adequate, particularly for inexperienced crew?
- What practicable safety improvements could be made?

**GENERAL**

- Are all statutory regulations and company safety procedures being complied with?
- Is the safety advice in publications such as this Code, Merchant Shipping Notices etc. being followed where possible?
- Have the crew in the area any safety suggestions to make?
- Have any faults identified in previous inspections been rectified?
ANNEX 3.2

VOLUNTARY STATEMENT

Relating to an accident on board/Name of ship/official number .................
on/date of accident/at/time of accident

Particulars of witness:
Name:
Rank and occupation:
Home address of crew members;
Address of employment of others:

________________________________

STATEMENT OF WITNESS
I make this statement voluntarily having read it before signing it and believing
the same to be true.

Signature of Witness

Date Time

________________________________

Particulars of interviewer
Name:

Rank:

MSCP01/Ch3/Rev1.01/Page 25
4.1 Introduction

4.1.1 Risks to the health and safety of workers must be identified and assessed. It will often not be possible to remove all risks, but attention should be given to control measures which make the working environment and working methods as safe as reasonably practicable.

4.1.2 Personal protective equipment should be relied upon only to afford protection against the risks that remain after all other reasonably practicable steps have been taken. This is chiefly because personal protective equipment does nothing to reduce the hazard, and can protect only the person wearing it, leaving others vulnerable.

4.1.3 It should be noted that the use of personal protective equipment may in itself cause a hazard - for example, through reduced field of vision, loss of dexterity or agility.

4.2 Employer duties

4.2.1 It is the responsibility of the employer to ensure that workers are provided with suitable personal protective equipment where it is needed.

4.2.2 As a general rule, personal protective equipment should be supplied at no cost to the worker. The exception to this is where workers wish to have equipment which exceeds the minimum standards required by legislation (e.g. a more attractive design).

4.2.3 Employers should assess the equipment required to ensure that it is suitable and effective for the task in question, and meets the appropriate
standards of design and manufacture

4.2.4 Suitable equipment should
(a) be appropriate for the risks involved, and the task being performed, without itself leading to any significant increased risk,
(b) correspond to existing conditions at the workplace,
(c) take account of ergonomic requirements and the worker's state of health,
(d) fit the worker correctly after any necessary adjustment

4.2.5 Details of personal protective equipment are listed in a Merchant Shipping Notice, including the full title of each relevant standard. The appropriate personal protective equipment of the required standard must be supplied for workers doing the tasks listed in these M-notices. However, this should not be considered an exhaustive list, and personal protective equipment must also be supplied wherever risk assessment indicates that there is a risk to health and safety from a work process which cannot be adequately controlled by other means, but which can be alleviated by the provision of such clothing or equipment

4.2.6 The employer is also required to ensure that personal protective equipment is regularly checked and maintained or serviced. Records should be maintained of servicing and any repair required and carried out

4.2.7 All workers who may be required to use protective equipment must be properly trained in its use. This should include being advised of its limitations. A record should be kept of who has received training.

4.2.8 Defective or ineffective protective equipment provide no defence. It is therefore essential that the correct items of equipment are selected and that they are properly maintained at all times. The manufacturer's instructions should be kept safe with the relevant apparatus and if necessary referred to before use and when maintenance is earned out. Personal protective
equipment should be kept clean and should be disinfected as and when necessary for health reasons

4.2.9 A competent person should inspect each item of protective equipment at regular intervals and in all cases before and after use. All inspections should be recorded. Equipment should always be properly stowed in a safe place after use.

4.3 Worker duties

4.3.1 Workers must wear the protective equipment or clothing supplied when they are carrying out a task for which it is provided, and follow appropriate instructions for use.

4.3.2 Personal protective equipment should always be checked by the wearer each time before use. Workers should comply with the training they have received in the use of protective items, and follow the manufacturer's instructions for use.

4.4 Types of equipment

4.4.1 Overalls, gloves and suitable footwear are the proper working dress for most work about ship but these may not give adequate protection against particular hazards in particular jobs. Specific recommendations for the use of special personal protective equipment will also be found in relevant chapters in Section 3 of the Code but there will be other occasions when the need for such special protection will be identified by the risk assessment carried out by the officer in charge at that particular time. Personal protective equipment must always be selected according to the hazard being faced and the kind of work being undertaken, in accordance with the findings of the risk assessment
4.4.2 Personal protective equipment can be classified as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head protection</td>
<td>Safety helmets, bump caps hair protection</td>
</tr>
<tr>
<td>Hearing protection</td>
<td>Ear muffs, ear plugs</td>
</tr>
<tr>
<td>Face and eye protection</td>
<td>Goggles and spectacles, facial shields</td>
</tr>
<tr>
<td>Respiratory protective</td>
<td>Dust masks, respirators, breathing apparatus</td>
</tr>
<tr>
<td>equipment</td>
<td></td>
</tr>
<tr>
<td>Hand and foot protection</td>
<td>Gloves, safety boots and shoes</td>
</tr>
<tr>
<td>Body protection</td>
<td>Safety suits, safety belts, harnesses, aprons,</td>
</tr>
<tr>
<td></td>
<td>high visibility clothing.</td>
</tr>
<tr>
<td>Protection against drowning</td>
<td>Lifejackets, buoyancy aids and lifebuoys</td>
</tr>
<tr>
<td>Protection against hypothermia</td>
<td>Immersion suits and anti-exposure suits</td>
</tr>
</tbody>
</table>

4.5 Head protection

Safety Helmets

4.5.1 Safety helmets are most commonly provided as protection against falling objects. They can also protect against crushing or a sideways blow, and chemical splashes.

4.5.2 Since the hazards may vary, it will be appreciated that no one type of helmet would be ideal as protection in every case. Design details are normally decided by the manufacturer whose primary consideration will be compliance with an appropriate standard (see 4.2.5.). The standard selected should reflect the findings of the risk assessment.

4.5.3 The shell of a helmet should be of one piece seamless construction designed to resist impact. The harness or suspension when properly adjusted forms a cradle for supporting the protector on the wearer's head. The crown straps help absorb the force of impact. They are designed to permit a clearance of approximately 25 mm between the shell and the skull of the wearer. The harness or suspension should be properly adjusted before a
helmet is worn. Safety equipment should be used in accordance with manufacturers’ instructions.

**Bump caps**

4.5.4 A bump cap is simply an ordinary cap with a hard penetration-resistant shell. They are useful as protection against bruising and abrasion when working in confined spaces such as a main engine crankcase or a double bottom tank. They do not, however, afford the same protection as safety helmets and are intended only to protect against minor knocks.

**Hair nets and safety caps**

4.5.5 Personnel working on or near to moving machinery have always to be on their guard against the possibility of their hair becoming entangled in the machinery. Long hair should always be covered by a hair net or safety cap when working with or near moving machinery.

**4.6 Hearing protection**

4.6.1 All persons exposed to high levels of noise, e.g. in machinery spaces, should wear ear protection of a type recommended as suitable for the particular circumstances. Protectors are of three types - ear plugs, disposable or permanent, and ear muffs. For further information see the Code of Practice Noise Levels in Ships, published by the Department of Transport (1990).

4.6.2 The simplest form of ear protection is the ear plug. This type however has the disadvantage of limited capability of noise level reduction. Ear plugs of rubber or plastic also have only limited effect, in that extremes of high or low frequency cause the plug to vibrate in the ear canal causing a consequential loss in protection. It may be difficult to keep re-useable ear plugs clean on a ship, and disposable ear plugs are recommended. Ear-plugs should never be used by anyone with ear-trouble, without medical advice.
4.6.3 In general, ear muffs provide a more effective form of hearing protection. They consist of a pair of rigid cups designed to completely envelope the ears, fitted with soft sealing rings to fit closely against the head around the ears. The ear cups are connected by a spring loaded headband (or neck band) which ensures that the sound seals around the ears are maintained. Different types are available and provision should be made according to the circumstances of use and expert advice.

4.7 Face and eye protection

4.7.1 The main causes of eye injury are:
(a) infra-red rays - gas welding;
(b) ultra-violet rays - electric welding;
(c) exposure to chemicals;
(d) exposure to particles and foreign bodies.
Protectors are available in a wide variety, designed to international standard specifications, to protect against these different types of hazard (see 4.2.5).

4.7.2 Ordinary prescription (corrective) spectacles, unless manufactured to a safety standard, do not afford protection. Certain box-type goggles are designed so that they can be worn over ordinary spectacles.

4.8 Respiratory protective equipment

4.8.1 Respiratory protective equipment is essential for protection when work has to be done in conditions of irritating, dangerous or poisonous dust, fumes or gases. There are two main types of equipment which perform different functions:
(a) a respirator filters the air before it is inhaled;
(b) breathing apparatus supplies air or oxygen from an uncontaminated source.
4.8.2 Advice on selection, use and maintenance of the equipment is contained in the relevant Standard. This should be available to all those concerned with the use of respiratory protective equipment on board ship (see 4.2.5).

4.8.3 It is most important that the face-piece of respirators and breathing apparatus is fitted correctly to avoid leakage. The wearing of spectacles, unless adequately designed for that purpose, or of beards is likely to adversely affect the face seal. This is a particularly important consideration in emergency situations.

Respirators

4.8.4 The respirator selected must be of a type designed to protect against the hazards being met
(a) The dust respirator gives protection against dusts and aerosol sprays but not against gases. There are many types of dust respirator available but they are generally of the ori-nasal type, i.e. half-masks covering the nose and mouth. Many types of light, simple face masks are also available and are extremely useful for protecting against dust nuisance and non-toxic sprays but should never be used in place of proper protection against harmful dusts or sprays.
(b) The positive pressure powered dust respirator incorporates a battery-powered blower unit, connected by a tube to the face-mask to create a positive pressure in the face-piece. This makes breathing easier and reduces face-seal leakage.
(c) The cartridge-type of respirator consists of a full face-piece or half mask connected to a replaceable cartridge containing absorbent or adsorbent material and a particulate filter. It is designed to provide protection against low concentrations of certain relatively non-toxic gases and vapours.
(d) The canister-type of respirator incorporates a full face-piece connected
to an absorbent or adsorbent material contained in a replaceable canister carried in a sling on the back or side of the wearer. This type gives considerably more protection than the cartridge type.

4.8.5 The filters, canisters and cartridges incorporated in respirators are designed to provide protection against certain specified dusts or gases. Different types are available to provide protection against different hazards and it is therefore important that the appropriate type is selected for the particular circumstances or conditions being encountered. It must be remembered, however, that they have a limited effective life and must be replaced or renewed at intervals in accordance with manufacturers’ instructions.

4.8.6 RESPIRATORS PROVIDE NO PROTECTION AGAINST OXYGEN DEFICIENT ATMOSPHERE. They should never be used to provide protection in confined spaces such as tanks, cofferdams, double bottoms or other similar spaces against dangerous fumes, gases or vapours. Only breathing apparatus (self-contained or airline) is capable of giving protection in such circumstances.

Breathing apparatus

4.8.7 The type of breathing apparatus to be used when entering a space that is known to be, or suspected of being deficient in oxygen or containing toxic gas or vapours is given in section 17.13.

4.8.8 Breathing apparatus should not be used underwater unless the equipment is suitable for the purpose, and then only in an emergency.

Resuscitators

4.8.9 It is recommended that resuscitators of an appropriate kind should be provided when any person may be required to enter a dangerous space; see...
4.9 Hand and foot protection

Gloves

4.9.1 The exact type of glove selected will depend on the kind of work being undertaken or the particular substance being handled, and in these cases expert advice should be followed. The following are general rules:

(a) Leather gloves should generally be used when handling rough or sharp objects.

(b) Heat-resistant gloves should be used when handling hot objects.

(c) Rubber synthetic or PVC gloves are generally best for handling acids, alkalis, various types of oils, solvents and chemicals in general.

Footwear

4.9.2 Foot injuries most often result from the wearing of unsuitable footwear (e.g. sandals, plimsolls and flip-flops) rather than from failure to wear safety shoes and boots, It is nevertheless strongly advisable that all personnel whilst at work on board ship wear appropriate safety footwear.

4.9.3 Injuries are commonly caused by impact, penetration through the sole, slipping, heat and crushing. Safety footwear is available which is designed to protect against these or other specific hazards identified in the risk assessment, manufactured to various standards appropriate to the particular danger involved (see 4.2.5).

4.10 Protection from falls

4.10.1 All personnel who are working aloft, outboard or below decks or in any other area where there is a risk of falling more than two metres, should wear a safety harness (or belt with shock absorber) attached to a lifeline. If a vessel is shipping frequent seas, nobody should be required to work on deck unless absolutely necessary. However, where this is unavoidable, persons on
deck should wear a harness and, where practicable, should be secured by lifeline as a protection from falls and from being washed overboard or against the ship's structure.

4.10.2 Inertial clamp devices allow more freedom in movement.

4.11 Body protection

4.11.1 Special outer clothing may be needed for protection when personnel are exposed to particular contaminating or corrosive substances. This clothing should be kept for the particular purpose and dealt with as directed in the relevant sections of the Code.

4.11.2 High visibility clothing should be worn when it is important to be seen to be safe - for example, during loading and unloading operations.

4.12 Protection against drowning

4.12.1 Where work is being carried out overside or in an exposed position where there is a reasonably foreseeable risk of falling or being washed overboard or where work is being carried out in or from a ship's boat a lifebuoy with sufficient line should be provided. In addition and as appropriate a lifejacket or buoyancy aid should be provided. Where necessary, personnel should be provided with thermal protective clothing to reduce the risks of cold shock.
CHAPTER 5
SAFETY SIGNS

5.1 Safety Signs

5.1.1 Any safety signs permanently erected on board the ship for the purpose of giving health and safety information or instruction shall comply with the appropriate Standard. Other national or international standards providing for equivalent safety will be accepted.

5.1.2 Safety signs, which include hazard warnings, should be used whenever a hazard or obstruction exists and such a sign is appropriate. Particular attention should be paid on passenger ships to hazards which may be familiar to seafarers but not to passengers.

5.1.3 Where a language other than English is extensively used on a ship, any text used in conjunction with a sign should usually be displayed also in that language.

5.2 General

5.2.1 Colours and symbols, when used appropriately, can provide information and warnings of hazards which can be understood by anyone, regardless of what language they speak. Chapter 28 gives types of sign which generally conform with both international systems, where they exist, and European wide standards.

5.2.2 Symbols relating to life saving appliances are governed by international standards and are mandatory. Those relating to fire control plans are recommended international standards.

5.3 Role of the Employer

5.3.1 Employers should ensure that safety signs are displayed where
appropriate If the employer is not in a position to provide signs for example, where the fittings of the ship are not within his control - he should ensure that signs are in place before allowing workers to start any relevant work

5.3.2 The employer should also ensure that the system of signs in use is clearly understood.

5.4 Workers’ responsibilities

5.4.1 All workers should ensure that they understand the meaning of signs and any colour coding system in use on their ship and follow the relevant safety procedures.

5.4.2 Those aware of any deficiency in their colour vision should tell their supervisor or employer and take extra care where colour is used as a means of identification.
CHAPTER 6
MEANS OF ACCESS AND SAFE MOVEMENT

6.1 Means of Access

6.1.1 Merchant Shipping Regulations place an obligation on both the master of a ship and the employer of the master to ensure that a safe means of access is provided and maintained, both between the ship and the shore or another ship alongside which the ship is secured. In carrying out the duties arising from these Regulations full account must be taken of the principles and the guidance in Chapter 18 of this Code.

6.1.2 Where the provision of equipment is necessary to ensure safe means of access it must be placed in position promptly, be properly rigged and deployed, safe to use and adjusted as necessary to maintain safe access.

6.1.3 When access equipment is provided from the shore it is still the responsibility of the master to ensure as far as is reasonably practicable that the equipment meets these requirements.

6.1.4 Any access equipment and immediate approaches to it must be adequately lit. For these areas a lighting level of at least 20 lux should be provided (measured at a height of 1 metre above the surface level) unless:

(a) a higher level is required by other Regulations.

(b) provision of such levels of lighting would contravene other Regulations, e.g. the Collision Regulations and the Distress Signals Order Guidance on lighting are given in Chapter 13 (and Chapter 18).

6.1.5 Any equipment used for the provisions of means of access and any safety net must be fit for purpose and properly maintained. Accommodation ladders and any portable or rope ladders used for access must comply with the
standards in Annex 181 of the Code. All access equipment should be inspected by a competent person at appropriate intervals.

6.1.6 A portable ladder should only be used for access to the ship where no safer access is reasonably practicable. A rope ladder should only be used between a ship with high freeboard and a ship with low freeboard or between a ship and a boat if no safer means of access is reasonably practicable.

6.1.7 A life-buoy with a self-activating light and also a separate buoyant safety line attached to a quoit or some similar device must be provided ready for use at the point of access aboard the ship.

6.1.8 An adequate number of safely nets of a suitable size and strength are to be earned on the ship or otherwise be readily available. Where there is a risk of a person falling from the access equipment or from the quayside or ship's deck adjacent to the access equipment, a safety net shall be mounted where reasonably practicable. Guidance on the rigging of safety nets is in Chapter 18.

6.2 Use of Equipment

6.2.1 When suitable access equipment is provided from the ship or from the shore or from another ship, any person boarding or leaving the ship must use that equipment.

6.3 Access for Pilots

6.3.1 Merchant Shipping Regulations require the owner to provide pilot ladders, accommodation ladders and hoists, which comply with the construction and testing requirements, laid out in the Regulations. Guidance on these standards is included in Annex 18.1.

6.3.2 In addition, the Regulations require the master to ensure that:

- each pilot ladder, accommodation ladder, hoist and associated equipment is properly maintained and stowed, and regularly inspected to ensure that, so
far as is reasonably practicable, each is safe to use

- each pilot ladder and hoist is used only for the embarkation and
disembarkation of pilots and by officials and other persons while a ship is
arriving at or leaving a port

- the rigging of the pilot ladder, accommodation ladder, hoist and associated
equipment is supervised by a responsible officer who is in communication
with the navigating bridge. This officer’s duties will include arranging for the
pilot to be escorted by a safe route to and from the bridge. Advice on safe
rigging of such equipment is in Chapter 18

- personnel engaged in rigging or operating any mechanical equipment are
instructed in the safe procedures to be adopted and that the equipment is to
be tested prior to each use

6.3.4 A safety-line and harness, a life-buoy with a self-igniting light, and a
heaving line should be kept at hand ready for use

6.3.5 The pilot ladder or hoist overside and its controls, and also the position
where the person embarks and disembarks on the ship should be adequately lit

6.3.6 The owner and the master must ensure that there is on board a copy of the
approved manufacturer’s maintenance manual for the hoist, containing a
maintenance log book. The hoist must be maintained in accordance with the
maintenance manual, and a record kept by the responsible officer in the
maintenance log book.

6.3.7 The master is required to ensure that the hoist is subject to regular test
rigging and inspection. Such tests should be carried out by designated ship’s
personnel at regular intervals. All tests should be logged

6.4 Safe Movement

6.4.1 Merchant Shipping Regulations place an obligation on both the master of a
ship and the employer of the master to ensure that a safe means of access is
provided and maintained to any place on the ship to which a person may be
expected to go. In carrying out the duties arising from these Regulations full account must be taken of the principles and the guidance in Chapter 13 of this Code.

6.4.2 Places on the ship where people may be expected to be include accommodation areas as well as normal places of work. "Persons" in this context include passengers, dock-workers, and other visitors to the ship on business but exclude persons who have no right to be on the ship.

6.4.3 All deck surfaces used for transit about the ship and all passageways, walkways and stairs must be properly maintained and kept free from substances liable to cause a person to slip or fall.

6.4.4 Areas used for the loading or unloading of cargo or for other work processes or for transit should be adequately and appropriately illuminated.

6.4.5 For areas used for loading or unloading of cargo or for other work processes a lighting level of at least 20 lux should be provided and for transit areas a level of at least 8 lux should be provided (measured at a height of 1 metre above the surface level) unless:
(a) a higher level is required by other Regulations, e.g. the Crew Accommodation Regulations; or
(b) provision of such levels of lighting would contravene other Regulations, e.g. the Collision Regulations and the Distress Signals Order General rules for where these specific regulations do not apply are given in Chapter 13.

6.4.6 The employer and master are also responsible for ensuring that any permanent safety signs displayed on board the ship comply with the Standard.

6.4.7 Any opening, open hatchway or dangerous edge into, through or over which a person may fall shall be fitted with secure guards or fencing of adequate design and construction. Advice on guard-rails and safety fencing is given in Chapter 13. These requirements do not apply where the opening is a permanent
access way, or where work is in progress which could not be earned out with the guards in place.

6.4.8 All ship's ladders must be of good construction and sound material, strong enough for the purpose for which they are used, free from patent defect and properly maintained. Ladders providing access to the hold must comply with the standards in Annex 6.1.

6.4.9 Suitable hand-holds should be provided at the top and at any intermediate landing place of all fixed ladders.

6.4.10 The Regulations also require the employer and master to ensure that ship's powered vehicles (which includes mobile lifting plant) are only driven by a competent person who is authorised to do so, and to ensure that they are used safely. Such vehicles must be properly maintained.

6.5 Entry into dangerous spaces

6.5.1 A dangerous space is defined in the regulations as "any enclosed or confined space in which it is foreseeable that the atmosphere may at some stage contain toxic or flammable gases or vapours, or be deficient in oxygen, to the extent that it may endanger the life or health of any person entering that space." Section 17.4. gives advice on identifying these hazards.

6.5.2 The master is required to ensure that all unattended dangerous spaces are secured against entry, except when it is necessary to enter.

6.5.3 Employers must have procedures in place for entering and working in confined spaces, and it is the master's responsibility to ensure these are followed. No person should enter or remain in a dangerous space except in accordance with the set procedures.

6.5.4 The guidance in this Code (Chapter 17) must be taken into account both in drawing up and implementing the procedures.
ANNEX 6.1
STANDARDS FOR HOLD ACCESS

Hold Access - New Ships

Where the keel of a ship is laid or the ship is at a similar stage of construction, after 31 December 1988 the following standards of hold access should be provided:-

(i) The access shall be separate from the hatchway opening, and shall be by a stairway if possible.

(ii) A fixed ladder or a line of fixed rungs, shall have no point where they fill a reverse slope.

(iii) The rungs of a fixed ladder shall be at least 300 mm wide, and so shaped or arranged that a person’s foot cannot slip off the ends. Rungs shall be evenly spaced at intervals of not more than 300 mm and there shall be at least 150 mm clear space behind each rung.

(iv) There shall be space outside the stiles of at least 75 mm to allow a person to grip them.

(v) There shall be a space at least 760 mm wide for the user’s body, except that at a hatchway this space may be reduced to a clear space of at least 600 mm by 600 mm.

(vi) Fixed vertical ladders should be provided with a safe intermediate landing platform at intervals of not more than 9 metres.

(vii) Where vertical ladders to lower decks are not in a direct line a safe intermediate landing shall be provided.

(viii) Intermediate landings shall be of adequate width and afford a secure footing and extend from beneath the foot of the upper ladder to the point of access to the lower ladder They shall be provided with guard rails.

(ix) Fixed ladders and stairways giving access to holds shall be so placed as to minimise the risk of damage to them from cargo handling operations.
Fixed ladders shall, if possible, be so placed or installed as to provide back support for a person using them; but hoops shall be fitted only where they can be protected from damage to them from cargo handling operations.

**Hold Access - Existing Ships**

Where the keel of a ship was laid or the ship was at a similar stage of construction before 1 January 1989, at least the following standards of hold access should be provided:

(i) Access should be provided by steps or ladder except:
   (a) at coamings; and
   (b) where the provision of a ladder on a bulkhead or in a trunk hatchway is clearly not reasonably practicable.

In such cases ladder cleats or cups may be used.

(ii) All ladders between lower decks should be used in the same line as the ladder from the top deck, unless the position of the lower hatch or hatches prevent this.

(iii) Cleats or cups should be at least 250 mm wide and so constructed as to prevent a person's foot slipping off the side.

(iv) Each cleat, cup, step or rung of a ladder shall provide a foothold, including any space behind the ladder, at least 115 mm deep. Cargo should not be stowed as to produce this foothold.

(v) Ladders which are reached by cleats or cups on a coaming should not be recessed under the deck more than is reasonably necessary to keep the ladder clear of the hatchway.

(vi) Shaft tunnels should be equipped with adequate handholds and footholds on each side.

(vii) All cleats, cups, steps or rungs of ladders should provide adequate handholds.

**Portable ladders**

A portable ladder should only be used where no safer means of access is reasonably practicable.
Portable ladders should be pitched between 60° and 75° from the horizontal, properly secured against slipping or shifting sideways and be so placed as to afford a clearance of at least 150 mm behind the rungs. Where practicable the ladder should extend to at least 1 metre above any upper landing place unless there are other suitable handholds.
Blank Page
CHAPTER 7
WORK EQUIPMENT

7.1 MS and FV (Health and Safety at Work) Regulations

7.1.1 Employers have a duty to provide and maintain plant machinery and equipment which are safe and without risk to health.

7.1.2 The term "work equipment" applies to any machine, apparatus, tool or installation used at work, ranging from hand tools to the main engines. The exception to this is the safety equipment and apparatus provided in compliance with SOLAS requirements, which is subject to other merchant shipping regulations.

7.1.3 In practice, work equipment supplied by the ship is generally the responsibility of the Company. This is the position reflected in specific regulations such as the Hatches and Lifting Gear Regulations 1988 (see below) which place duties on the "employer and master".

7.1.4 Any equipment made available to workers should comply with any relevant standards laid down in regulations and maintained in accordance with the manufacturers instructions. Equipment not covered by specific regulations or type approvals should comply with the appropriate British Standard or its nearest international equivalent.

7.1.5 The employer is responsible for ensuring that workers are properly trained to use any equipment they need to do their job.

7.1.6 Instruction does not necessarily have to be a formal training course. All instruction or information must be in a language that those concerned understand, and communicated effectively.
7.2 MS (Guarding of Machinery and Safety of Electrical Equipment) Regulations 1988

7.2.1 The Merchant Shipping (Guarding of Machinery and Safety of Electrical Equipment) Regulations 1988 place duties on the employer and master to ensure that all machinery on board is safe and properly guarded.

7.2.2 Every dangerous part of the ship's machinery must be securely guarded, where that is necessary for the safety of anyone on board.

7.2.3 Exceptions are allowed for the purposes of examination, adjustment or any test that is shown to be immediately necessary. However, the following conditions must be in place:

- exposure of the dangerous part must be the minimum necessary,
- a responsible ship's officer or other responsible person must authorise the exposure;
- only a competent person may carry out the examination;
- any person working close to the machinery must have enough clear space and adequate light while they are working;
- any person operating or close to the machinery must have adequate instruction in safe systems of work for that machinery, the dangers arising from its operation and the precautions to be taken: and
- a conspicuous warning notice must be displayed on or close to the machinery.

7.2.4 Guards and other devices provided under these regulations must be of substantial construction and properly maintained and, except as allowed above, kept in position when the relevant machinery parts are in motion.

7.2.5 There must be a means for taking prompt action to stop any machinery and cut off power in the event of an emergency.
7.2.6 All ship's electrical equipment and installations must be constructed, installed, operated and maintained in such a way that there is no electrical hazard to the ship or any person.

7.3 MS (Hatches and Lifting Plant) Regulations

7.3.1 The Merchant Shipping (Hatches and Lifting Plant) Regulations 1988 place duties on the employer and master in relation to hatches and lifting gear on board ship.

7.3.2 In carrying out these duties, full account must be taken of the principles and the guidance described in this chapter and Chapters 21 (for regulations relating to lifting plant) and 26 (for regulations relating to hatches) of this Code.

7.4 Hatches

7.4.1 Any hatch covering must be of sound construction and material, fit for purpose, free from patent defect and properly maintained.

7.4.2 The master must ensure that:
  - a hatch covering is only used if it can be removed and replaced without endangering personnel;
  - a hatch is not used unless the covering has been completely removed or properly secured;
  - only an authorised person operates a power-operated hatch covering except in the event of an emergency.

7.5 Lifting Plant

7.5.1 Regulations 5-10 deal with the use, handling and testing of lifting plant aboard ship.

7.5.2 Lifting plant means:-
  * "lifting appliance" means any ship's stationary or mobile appliance (including attachments for anchoring, fixing or supporting that appliance, but not
including vehicle coupling arrangements) which is used on a ship for the purpose of suspending, raising or lowering loads or moving them from one position to another whilst suspended and includes ship's lift, trucks and similar vehicles, it does not include:

(a) pipes, or gangways, or
(b) screw, belt, bucket or other conveyors used for the continuous movement of cargo or people but does include the lifting appliances used to suspend, raise, lower or move any of these items,
(c) survival craft or rescue boat launching and recovery appliances or arrangements, or
(d) pilot hoists

"lifting gear means any gear by means of which a load can be attached to a lifting appliance and which does not form an integral part of that appliance or load but does not include pallets, one-trip slings and pre slung cargo slings, and freight containers"

"lifting plant" includes any lifting appliance or lifting gear

7.5.3 The regulations require the employer and master to ensure that any lifting plant (i.e. lifting appliance plus any lifting gear) used on board ships is:
(a) of good design
(b) of sound construction and material, and free from patent defect
(c) fit for purpose,
(d) properly installed or assembled, and
(e) properly maintained,

7.5.4 In deciding whether a lifting appliance is of adequate strength for the purpose for which it is to be used, account should be taken of the weight of the associated lifting gear and whether the gear is likely to impose additional...
stresses by virtue of the nature of the operation, e.g. grab work

7.5.5 Lifting plant should be kept in good, efficient working order and in good repair. Systematic preventive maintenance should be carried out, following any manufacturers instructions. This should include regular inspection by a competent person to assess whether the lifting plant is safe for continued use. These inspections are separate from, and additional to, those required under the regulations (see para 7.6.1). The interval between such inspections will depend on the character and use of the plant.

7.5.6 Guidance on safe use of lifting equipment is in Chapter 21.

7.5.7 The master is required to ensure that any one trip sling, pre-slung cargo sling or any pallet or similar piece of equipment for supporting loads or lifting attachment which forms an integral part of the load is not used unless it is of good construction, of adequate strength for the purpose for which it is used and free from patent defect.

7.5.8 Only those trained and competent to do so, and authorised to do so by a responsible ship’s officer person, may operate any ship’s lifting plant. The same applies to the operation of a ship’s ramp or a retractable car deck, except in the event of an emergency endangering health and safety.

7.5.9 Training should consist of theoretical instruction enabling the trainee to appreciate the factors affecting the safe operation of the lifting plant, and supervised practical work with the appropriate plant etc. Employers may issue certificates to personnel who have successfully completed training, specifying the type of appliance on which the test was carried out.

7.5.10 For the authorised use of small non-powered lifting appliances such as handy billies, standard seafarers’ certificates of competency will suffice. Where lifting appliances are to be operated by non-seafarers (stevedores, maintenance workers etc.), a written undertaking from the employers that...
only competent persons are employed to work on a specified type or class of
lifting appliance, may be accepted at the master’s discretion.

7.5.11 Employers should keep records of training and testing undertaken, and
should ensure the routine monitoring of the competence of those operating
lifting appliances.

7.6 Testing and examination of lifting equipment

7.6.1 The employer and the master are responsible for ensuring that
• no lifting plant on board ship is used:
  (a) after manufacture or installation, or
  (b) after any repair or modification which is likely to alter the safe working
      load, or affect the lifting plant’s strength or stability, without first being
tested by a competent person,

7.6.2 The regulations require that a person chosen to act as a competent
person in the examination and testing of plant should be over 18 and have the
practical and theoretical knowledge required for the performance of thorough
examinations and tests of ship’s lifting plant. This should include actual
experience of the type of machinery or plant concerned sufficient to be able to
detect any defects or weaknesses and to assess their importance in relation to
the strength, stability and functions of the machinery or plant

7.6.3 A “thorough examination” means a detailed examination by a competent
person, supplemented by such dismantling, as the competent person
considers necessary, and access to or removal of hidden parts also at the
discretion of the competent person in order to arrive at a reliable
conclusion as to the safety of the plant examined. An examination of a sample or parts of a lifting appliance is not sufficient to constitute a thorough examination.

7.6.4 The competent person may require "non-destructive testing" of lifting plant as part of any thorough examination.

7.6.5 The period of 12 months is the maximum period that should be met for the examination of all plant.

7.6.6 Where plant is subject to arduous or very frequent use, more frequent thorough examinations may be appropriate in such cases or any other case where they think fit, the competent person carrying out the thorough examination may specify in their report a period of less than 12 months to the next thorough examination.

7.7 Marking of Lifting equipment

7.7.1 The employer and the master must ensure that each lifting appliance, lift truck, and each item of lifting gear earned is clearly marked with its safe working load and a means of identification. Where such marking is not reasonably practicable, the safe working load shall otherwise be readily ascertainable.

Reg. 9 (1))

9(3))

Reg. 9 (2))

7.7.2 Where the safe working load of a crane varies with its operating radius, it is required to be fitted with an accurate indicator, clearly visible to the driver showing the radius of the load lifting attachment at any time and the safe working load corresponding to that radius.

Reg. 9 (4))

7.7.3 The employer and the master shall ensure that each item of lifting gear which weighs a significant proportion of its own safe working load shall in addition to the requirement in Regulation 9 (3) be clearly marked with its weight.

7.7.4 In the case of general purpose multi-legged sling assemblies, the marks should specify the safe working load at an included angle of up to 90°.

MSCP01/Ch7/Rev1.01/Page 7
between:-
(a) opposite legs in the case of two-legged springs;
(b) adjacent legs in the case of three-legged springs,
(c) diagonally opposite legs in the case of four-legged springs;
and there may be a further mark of a safe working load up to a maximum such
angle of 120°.

7.7.5 In the case of slings supplied in batches, a batch mark which is the
same on each sling of that batch should be used as a means of identification
where each sling does not have a separate individual mark of identification

7.7.6 The requirement to mark the weight of the lifting gear will generally
apply to lifting beams, lifting frames, vacuum or magnetic lifting devices and
other gear whose weight is substantial in relation to the loads they lift, and
other gear which bears a similar relationship to the weight of the loads it is
intended to be used with.

7.7.7 Where a lifting appliance is normally used with a specific removable
attachment such as a clamp or spreader, the marking of the safe working load
or rated capacity should specify whether the weight of that attachment is
included.

7.8 Certificates and Reports

7.8.1 The master shall ensure that a certificate or report in the required form
(see Annex 7.1) is supplied within 28 days following any statutory test or
examination. This must be kept in a safe place on board ship for a period of at
least two years from receipt of the certificate or report of the next following
test or examination.

7.8.2 Although the regulations allow 28 days for the production of
documentation, where any competent person discovers a defect affecting the
safety of the plant they should take immediate steps to ensure that a suitable
person in authority is made aware of these defects and inform the master or
their deputy, who should take appropriate action with respect to the use of the plant and the remedying of the defect.

7.8.3 Certificates or reports should be kept readily available on board and copies of the latest certificates or reports should be available to any dock worker or shore employer using the ship’s plant.

7.8.4 Reports should be in a form approved by the Secretary of State. Approved forms based on the model forms prepared by the International Labour Office for the examination and testing of ships’ lifting plant are shown at Annex 7.2. These model forms contain the minimum information required by ILO Convention 152. The forms produced for this purpose by the Classification Societies normally conform to this ILO requirement. However, the style of the forms may be varied and additional information included provided the minimum requirement is met.

7.8.5 A register of lifting appliances and items of loose gear should be maintained in a form based on the model recommended by the ILO and shown at Annex 7.2.

7.8.6 Records of reports and registers may be kept in either paper or electronic form.
# Annex 7.1

## CERTIFICATE OF TEST AND THOROUGH EXAMINATION OF LIFTING APPLIANCES

<table>
<thead>
<tr>
<th>Name of Ship</th>
<th>Certificate No. .............</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official Number</td>
<td>Call sign</td>
</tr>
<tr>
<td>Port of Registry</td>
<td>Name of Owner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(1) Situation and description of lifting application (with distinguishing numbers or marks if any) which have been tested and thoroughly examined</th>
<th>(2) Angle to the horizontal or radius at which test load applied</th>
<th>(3) Test load (tonnes)</th>
<th>(4) Safe working load (SWL) at angle or radius shown in column (2) (tonnes)</th>
</tr>
</thead>
</table>

Name and address of the firm or competent person who witnessed testing and earned out thorough examination

I certify that on the date to which I have appended my signature the gear shown in column (1) was tested and thoroughly examined and no defects or permanent deformation were found and that the safe working load is as shown

Date
Place
Signature

Note: This certificate is the standard international form as recommended by the International Labour Office in accordance with ILO Convention No. 152.
Annex 7.1 contd.

CERTIFICATE OF TEST AND THOROUGH EXAMINATION OF DERRICKS USED IN UNION PURCHASE

<table>
<thead>
<tr>
<th>Name of Ship</th>
<th>Certificate No.</th>
<th>Official Number</th>
<th>Call sign</th>
<th>Port of Registry</th>
<th>Name of Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situation and description of derricks used in union purchase (with distinguishing numbers or marks if any) which have been tested and thoroughly examined</td>
<td>Maximum height of triangle plate above hatch coaming (m) or maximum angle between runners</td>
<td>Test load (tonnes)</td>
<td>Safe working load SWL (U) when operating in union purchase (tonnes)</td>
</tr>
</tbody>
</table>

Position of outboard preventer guy attachments
(a) forward/aft of mast (m)
(b) from ships centre line (m)

Position of inboard preventer guy attachments
(a) forward/aft of mast (m)
(b) from ships centre line (m)

Name and address of the firm or competent person who witnessed testing and earned out thorough examination

I certify that on the date to which I have appended my signature the gear shown in column (1) was tested and thoroughly examined and no defects or permanent deformation were found and that the safe working load is as shown

Date
Signature
Place

Note: This certificate is the standard international form as recommended by the International Labour Office in accordance with ILO Convention No 152
CERTIFICATE OF TEST AND THOROUGH EXAMINATION OF LOOSE GEAR

<table>
<thead>
<tr>
<th>Name of Ship</th>
<th>Certificate No</th>
<th>Certificate No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official Number</td>
<td>5634</td>
<td>1234</td>
</tr>
<tr>
<td>Call sign</td>
<td>789</td>
<td>123</td>
</tr>
<tr>
<td>Port of Registry</td>
<td>123</td>
<td>456</td>
</tr>
<tr>
<td>Name of Owner</td>
<td>789</td>
<td>123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distinguishing number or mark</th>
<th>Description of loose gear</th>
<th>Number tested</th>
<th>Date of test</th>
<th>Test loaded (tonnes)</th>
<th>Safe working load (SWL) (tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name and address of makers or suppliers

Name and address of the firm or competent person who witnessed testing and earned out thorough examination

I certify that the above items of loose gear were tested and thoroughly examined and no defects affecting their SWL were found.

Date  Signature

Place

Note: This certificate is the standard international form as recommended by the International Labour Office in accordance with ILO Convention No 152

MSCP01/Ch7/Rev1.01/Page 13
## CERTIFICATE OF TEST AND THOROUGH EXAMINATION OF WIRE ROPE

<table>
<thead>
<tr>
<th>Name of Ship</th>
<th>Certificate No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official Number</td>
<td></td>
</tr>
<tr>
<td>Call sign</td>
<td></td>
</tr>
<tr>
<td>Port of Registry</td>
<td></td>
</tr>
<tr>
<td>Name of Owner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name and address of maker or supplier</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter of rope (mm)</th>
<th>Number of strands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of wires per strand</td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td></td>
</tr>
<tr>
<td>Lay</td>
<td></td>
</tr>
<tr>
<td>Quality of wire (N/mm²)</td>
<td></td>
</tr>
<tr>
<td>Date of test of sample</td>
<td></td>
</tr>
<tr>
<td>Load at which sample broke (tonnes)</td>
<td></td>
</tr>
<tr>
<td>Safe working load of rope (tonnes)</td>
<td></td>
</tr>
<tr>
<td>Intended use</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name and address of the firm or competent person who witnessed testing and earned out thorough examination</th>
</tr>
</thead>
</table>

I certify that the above particulars are correct, and that the rope was tested and thoroughly examined and no defects affecting its SWL were found.

<table>
<thead>
<tr>
<th>Date</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place</td>
<td></td>
</tr>
</tbody>
</table>

Note: This certificate is the standard international form as recommended by the International Labour Office in accordance with ILO Convention No 152.
### Annex 7.2

**REGISTER OF SHIPS' LIFTING APPLIANCES AND CARGO HANDLING GEAR**

<table>
<thead>
<tr>
<th>Name of Ship</th>
<th>Certificate No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Official Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Call sign</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port of Registry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Note:** This Register is the standard international form as recommended by the International Labour Office in accordance with ILO Convention No. 152.

**Register Number**

**Date of Issue**

**Issued by**

**Signature and Stamp**
Annex 7.2 contd.

PART 1 - Thorough examination of lifting appliances and loose gear

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Situation and description of lifting appliances and loose gear with distinguishing numbers or marks, if any, which have been thoroughly examined (see note 1)</td>
<td>(2)</td>
<td>Certificate Nos Examination performed (see note 2)</td>
</tr>
<tr>
<td>(3)</td>
<td>I certify that on the date to which I have appended my signature, the gear shown in column (1) was thoroughly examined and no defects affecting its safe working condition were found other than those shown in column (5) (Date and signature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td></td>
<td>Remarks (To be dated and signed)</td>
</tr>
</tbody>
</table>

Note 1: If all the lifting appliances are thoroughly examined on the same date it will be sufficient to enter in column (1) "All the lifting appliances and loose gear if not the parts which have been thoroughly examined on the dates stated must be clearly indicated.

Note 2: The thorough examinations to be indicated in column (3) include

(a) Initial
(b) 12 monthly
(c) Five yearly
(d) Repair/damage
(e) Other thorough examinations including those associated with heat treatment
PART 2 - Regular inspections of loose gear

<table>
<thead>
<tr>
<th>(1) Situation and description of loose gear (with distinguishing numbers or marks if any) which has been inspected (see Note 1)</th>
<th>(2) Signature and date of the responsible person carrying out the inspection</th>
<th>(3) Remarks (To be dated and signed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note: All loose gear should be inspected before use. However, entries need only be made when the inspection discloses a defect.
**CHAPTER 8**  
**SAFETY INDUCTION**

**8.1 General**

8.1.1 All new personnel joining a vessel (other than passengers) must undergo a safety induction by a responsible officer which must, as a minimum, cover the requirements of the relevant parts of A-VI/1 Standards of Training, Certification and Watchkeeping Convention 1995 (STCW95). This training should cover:

- personal survival techniques;
- fire prevention and fire fighting;
- elementary first aid; and
- personal safety and social responsibilities.

The statutory content of such training is set out in Tables 1-4 of the STCW Code.

8.1.2 It is recommended that each Company should design and implement a standard induction programme for each vessel, covering the STCW requirements, and incorporating any expanded detail specific to that vessel's particular needs. This Chapter gives guidance on the subjects to be covered.

8.1.3 On completion of the standard safety induction, it is also recommended that new personnel receive departmental induction covering safe working practices, areas of responsibility, departmental Standing Orders, and training/certification requirements to operate specific machinery or undertake specific tasks.

**8.2 Emergency procedures and fire precautions**

8.2.1 All new personnel should be given a clear explanation of the vessel's alarm signals, and be given instruction on the emergency assembly stations, lifeboat stations and fire drill/team requirements.
8.2.2 Smoking regulations on the vessel should be strictly observed. Safe and correct disposal of cigarette ends is essential, and "No Smoking" notices should be strictly obeyed.

8.2.3 Fire aboard a vessel can be disastrous. Common causes are:
   • faulty electrical appliances/circuitry;
   • overloading of electrical circuitry;
   • careless disposal of cigarette ends;
   • spontaneous combustion of dirty waste/ rags especially if contaminated with oil;
   • damp storage of linen/materials;
   • oil spillage/leakage in machinery spaces,
   • galley fires due to overheating of cooking oils,
   • carelessness with hand pressing irons;
   • incorrect methods of drying laundry

8.2.4 Personnel should be made aware of these risks and ensure at all times through good housekeeping, regular inspection and maintenance of electrical circuitry and appliances etc. that fire risks are removed where possible or kept to a minimum.

8.3 Accidents and Medical Emergencies

8.3.1 All personnel should know the action to be taken in cases of accident or medical casualty on board ship. For example, at least they will need to know how to raise the alarm and seek assistance.

8.4 Health and hygiene

8.4.1 It is the responsibility of individuals to ensure high standards of personal hygiene and to look after their own health. Attention should be paid to:
   • personal cleanliness
   • sensible diet
• adequate sleep during rest periods
• regular exercise
• avoidance of excess alcohol/tobacco
• prompt attention to cuts/abrasions
• maintenance of working clothes and protective equipment in a clean condition
• appropriate dress for the work and climate
• avoidance of recreational drugs.

8.4.2 On international voyages, any vaccinations/inoculations required should be fully updated. Medications for prevention of illness (e.g. anti-malarial tablets etc.) should be taken as and when required

8.4.3 In hot climates, it is important to protect skin from strong sunlight and drink plenty of salt-containing liquids to replace the body fluids lost through perspiration

8.5 Good Housekeeping

8.5.1 All ships move in a seaway and as space is very limited aboard any vessel, good housekeeping is essential for safe working/access and hygiene control. Attention should be paid in particular to the following areas

• safe and secure stowage of loose items
• proper securing of doors etc.
• good maintenance of fittings and fixtures
• adequate illumination of all work/transit areas
• avoidance of overloading of electrical circuits especially in cabins
• clear and legible signs/operational notices
• proper clearance and disposal of garbage/waste materials

8.6 Environmental Responsibilities

8.6.1 The maintenance of good standards to protect the environment whether local (i.e. accommodation/work areas) or the wider environment is important and is the responsibility of all personnel. Many aspects are covered
by international legislation and it is the duty of all personnel to ensure strict compliance with such legislation.

8.6.2 Handling and storage of garbage can present health and safety hazards to crews and ships. Requirements of the garbage management plan should be observed.

8.6.3 Particular attention should be paid to the correct methods of disposal of waste oils (bilge or other), chemicals, galley waste, garbage (especially plastics, glass, drums and other non-biodegradable items) redundant items (moorings, dunnage, cargo cleanings etc.) See Annex 81.

8.6.4 Incinerators and compactors should always be operated by competent personnel, and operating instructions should be strictly followed.

8.7 Occupational health and safety

8.7.1 All new personnel should be made aware of the regulations governing occupational health and safety on board, including activity specific regulations, such as those governing the use of lifting plant or means of access. Section 3 of this Code gives advice on complying with the regulations.

8.7.2 Where there are no specific regulations, the general duties contained in the Merchant Shipping and Fishing Vessels (Health and Safety at Work) Regulations 1997 apply. The main principle contained in these regulations is that all safety measures should be based on an assessment of the risks involved in a particular task, and the identification of the most effective measures to limit that risk. Guidance on risk assessment is in Chapter 1.

8.8 Employer and worker responsibilities

8.8.1 All new personnel should be informed of their employer's duties in respect of health and safety. The details are in the regulatory framework at the start of this Code.
8.8.2 It is particularly important that they are reminded to follow any training, oral or written instructions they have been given, and know to whom they should report any deficiencies in equipment or unsafe practices they may notice.

8.8.3 Personnel, who find any defects in any equipment, or a condition they believe to be hazardous or unsafe, should immediately report it to a responsible person, who should take appropriate action.

8.9 Consultation procedures

8.9.1 New personnel must be told about the procedures for consultation on health and safety matters, who their safety representatives are (where applicable) and should be encouraged to contribute ideas to improve safety.
ANNEX 8.1
Merchant Shipping (Prevention of Pollution by Garbage)
Regulations 1988 and amendment 1993

SUMMARY OF AT SEA GARBAGE DISPOSAL REGULATIONS

<table>
<thead>
<tr>
<th>GARBAGE TYPE</th>
<th>ALL SHIPS EXCEPT PLATFORMS—Note 4</th>
<th>OFFSHORE PLATFORMS Note 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OUTSIDE SPECIAL AREAS</td>
<td>IN SPECIAL AREAS Note 2</td>
</tr>
<tr>
<td>Plastics—includes synthetic ropes and fishing nets and plastic garbage bags</td>
<td>Disposal prohibited</td>
<td>Disposal prohibited</td>
</tr>
<tr>
<td>Floating dunnage, lining and packing materials</td>
<td>&gt; 25 miles offshore</td>
<td>Disposal prohibited</td>
</tr>
<tr>
<td>Paper rags, glass, metal, bottles, crockery and similar refuse</td>
<td>&gt; 12 miles</td>
<td>Disposal prohibited</td>
</tr>
<tr>
<td>All other garbage including paper rags, glass, etc. comminuted or ground - Note 3</td>
<td>&gt; 3 miles</td>
<td>Disposal prohibited</td>
</tr>
<tr>
<td>Food waste not comminuted or ground</td>
<td>&gt; 12 miles</td>
<td>&gt; 12 miles -Note 7</td>
</tr>
<tr>
<td>Food waste comminuted or ground</td>
<td>&gt; 3 miles</td>
<td>&gt; 12 miles -Notes 6, 7</td>
</tr>
<tr>
<td>Mixed refuse types</td>
<td>Note 5</td>
<td>Note 5</td>
</tr>
</tbody>
</table>

Notes:
1 SI 1988/2292 and SI 1993/1681 (To be replaced by consolidated regulations in 1998)
2 Garbage disposal regulations for special areas shall take effect in accordance with regulation 5 and 6 of the regulations.
3 Comminuted or ground garbage must be able to pass through a screen with mesh size no larger than 25mm.
4 Offshore platforms and associated ships include all fixed or floating platforms engaged in exploration or exploitation of seabed mineral resources, and all ships alongside or within 500 m of such platforms.
5 When garbage is mixed with other harmful substances having different disposal or discharge requirements, the more stringent requirements shall apply.
6 >3 miles for Wider Caribbean.
7 A UK ship shall not enter the Antarctic area unless:
   (a) it has sufficient capacity for the retention on board for all garbage while operating in the area.
   (b) it has concluded arrangements for the retention of retained garbage at a reception facility after it has left the area.
CHAPTER 9
FIRE PRECAUTIONS

9.1 General

9.1.1 The prevention of fires on board ship is of utmost importance. Sections 9.2 to 9.6 of this chapter outline some important organisational measures that can be taken to reduce the risk of fire. Advice to seafarers is included in Chapter 10.

9.1.2 Chapter 10 deals with action in the event of fire and other emergency procedures.

9.2 Smoking

9.2.1 Conspicuous warning notices should be displayed in any part of the ship where smoking is forbidden (permanently or temporarily) and observance of them should be strictly enforced. Ashtrays or other suitable containers should be provided and used at places where smoking is authorised.

9.3 Electrical and other fittings

9.3.1 All electrical appliances should be firmly secured and served by permanent connections whenever possible.

9.3.2 Flexible leads should be as short as practicable and so arranged as to prevent their being chafed or cut in service.

9.3.3 Makeshift plugs, sockets and fuses should not be used.

9.3.4 Circuits should not be overloaded since this causes the wires to overheat, destroying insulation and thus resulting in a possible short-circuit which could start a fire. Notices should be displayed warning that approval
should be obtained from a responsible officer to connect any personal
electrical appliances to the ship's supply.

**9.3.5** All portable electrical appliances, lights etc. should have insulation
readings taken before use, and should be isolated from the mains after use.

**9.3.6** Electrical equipment, which is to be used in any cargo area, should be
of an approved design.

**9.3.7** It is important that all fixed electric heaters are fitted with suitable
guards securely attached to the heater and that the guards are maintained in
position at all times. Drying clothing on or above the heaters should not be
permitted and suitably designed equipment should be supplied, or areas
designated.

**9.3.8** When using drying cabinets or similar appliances, overfilling of the
drying space should not obscure the ventilation apertures. Any screens or
fine mesh covers around the ventilation apertures should be regularly
inspected and cleaned, so that they do not become blocked by accumulated
fluff from clothing.

**9.3.9** The use of portable heaters should be avoided wherever possible.
However if they are required while the ship is in port (as temporary heating
during repairs and as additional heating during inclement weather), a
protective sheet of a non-combustible material should be provided to stand
them on to protect wooden floors or bulkheads, carpets or linoleum. Portable
heaters should be provided with suitable guards and should not be positioned
close to furniture or other fittings. These heaters should never be used for
drying clothes etc.

**9.3.10** Personal portable space-heating appliances of any sort should not be
used at sea and notices to this effect should be displayed.
9.3.11 The construction and installation of electric heaters should always be carried out in accordance with the relevant regulations and instructions or guidance supplied by the manufacturer.

9.4 Spontaneous combustion

9.4.1 Dirty waste, rags, sawdust and other rubbish - especially if contaminated with oil - may generate heat spontaneously which may be sufficient to ignite flammable mixtures or may set the rubbish itself on fire. Such waste and rubbish should therefore be properly stored until it can be safely disposed of.

9.4.2 Materials in ship's stores, including linen, blankets and similar absorbent materials are also liable to ignite by spontaneous combustion if damp or contaminated by oil. Strict vigilance, careful stowage and suitable ventilation are necessary to guard against such a possibility. If such materials become damp, they should be dried before being stowed away. If oil has soaked into them, they should be cleaned and dried, or destroyed. They should not be stowed in close proximity to oil or paints, or on or near to steam pipes.

9.5 Machinery spaces

9.5.1 All personnel should be made fully aware of the precautions necessary to prevent fire in machinery spaces - in particular, the maintenance of clean conditions, the prevention of oil leakage and the removal of all combustible materials from vulnerable positions (see Chapters 15 and 22).

9.5.2 Suitable metal containers should be provided for the storage of cotton waste, cleaning rags or similar materials after use. Such containers should be emptied at frequent intervals and the contents safely disposed of.

9.5.3 Wood, paints, spirits and tins of oil should not be kept in boiler rooms or machinery spaces including steering gear compartments.
9.5.4 All electric wiring should be well maintained and kept clean and dry. The rated load capacity of the wires and fuses should never be exceeded.

9.6 Galleys

9.6.1 Galleys and pantries present particular fire risks (see Chapter 14). Care should be taken in particular to avoid overheating or spilling fat or oil and to ensure that burners or heating plates are shut off when cooking is finished. Extractor flues and ranges etc. should always be kept clean.

9.6.2 Means to smother fat or cooking oil fires, such as a fire blanket, should be readily available close to stoves. Remote cut-offs and stops should be conspicuously marked and known to galley staff.
10.1 Action in the event of fire

10.1.1 The risk of fire breaking out on board a ship cannot be eliminated but its effects will be much reduced if the advice given in this Chapter is conscientiously followed.

10.1.2 Training in fire-fighting procedures and maintenance of equipment should be assured by regular drills in accordance with section 10.2. Access to fire-fighting equipment should be kept clear at all times and emergency escapes and passage ways should never be obstructed.

10.1.3 A fire can usually be put out most easily in its first few minutes. Prompt and correct action is essential.

10.1.4 The alarm should be raised and the bridge informed immediately if the ship is in port, the local fire authority Should be called. If possible, an attempt should be made to extinguish or limit the fire, by any appropriate means readily available, either using suitable portable extinguishers or by smothering the fire as in the instance of a fat or oil fire in the galley.

10.1.5 The different types of portable fire extinguishers on board are appropriate to different types of fire. Water extinguishers should not be used on oil or electric fires.

10.1.6 Openings to the space should be shut to reduce the supply of air to the fire and to prevent it spreading. Any fuel lines feeding the fire or threatened by it should be isolated. If practicable combustible materials adjacent to the fire should be removed.
10.1.7 If a space is filling with smoke and fumes, any personnel not properly equipped with breathing apparatus should get out of the space without delay if necessary, escape should be effected by crawling on hands and knees because air close to deck level is likely to be relatively clear.

10.1.8 After a fire has been extinguished, precautions should be taken against its spontaneous re-ignition.

10.1.9 Personnel should not re-enter a space in which a fire has occurred without wearing breathing apparatus, until it has been fully ventilated.

10.2 Musters and drills

10.2.1 Musters and drills are required to be carried out regularly in accordance with merchant shipping regulations. The guidance contained in this and the following sections should be read in conjunction with information and guidance on these regulations issued in the relevant shipping notices.

10.2.2 Musters and drills are designed to prepare a trained and organised response to dangerous situations, which may unexpectedly threaten loss of life at sea. It is important that they should be carried out realistically, approaching as closely as possible to emergency conditions. Changes in the ship's function and changes in the ship's personnel from time to time should be reflected in corresponding changes in the muster arrangements.

10.2.3 The muster list must be conspicuously posted before the ship sails and, on international voyages and in ships of Classes II A and III should be supplemented by emergency instructions for each crew member (e.g. in the form of a card issued to each crew member or affixed to individual crew berths and bunks). These instructions should describe the allocated assembly station, survival craft station and emergency duty and all emergency signals and action, if any, to be taken on hearing such signals.
10.2.4 An abandon ship drill and a fire drill must be held within 24 hours of leaving port if more than 25% of the crew have not taken part in drills on board the ship in the previous month. As soon as possible but not later than two weeks after joining the ship, onboard training in the use of the ship’s life-saving appliances, including survival craft equipment, must be given to crew members. As soon as possible after joining the ship, crew members should also familiarise themselves with their emergency duties, the significance of the various alarm systems and the locations of their lifeboat station and of all lifesaving and fire fighting equipment.

10.2.5 All the ship’s personnel concerned should muster/assemble at a drill wearing lifejackets properly secured. The lifejackets should continue to be worn during lifeboat drills and launchings but in other cases may be subsequently removed at the Master’s discretion if they would impede or make unduly onerous the ensuing practice, provided they are kept ready to hand.

10.2.6 The timing of emergency drills should vary so that personnel who have not participated in a particular drill may take part in the next.

10.2.7 Any defects or deficiencies revealed during drills and the inspections which accompany them should be made good without delay

10.3 Fire drills

10.3.1 Efficient fire-fighting demands the full co-operation of personnel in all departments of the ship. A fire drill should be held simultaneously with the first stage of the abandon ship drill. Fire-fighting parties should assemble at their designated stations. Engine room personnel should start the fire pumps in machinery spaces and see that full pressure is put on fire mains. Any emergency pump situated outside machinery spaces should also be started; all members of the crew should know how to start and operate the emergency pump.
**10.3.2** The fire parties should be sent from their designated stations to the selected site of the supposed fire, taking with them emergency equipment such as axes and lamps and breathing apparatus. The locations should be changed in successive drills to give practice in differing conditions and in dealing with different types of fire so that accommodation, machinery spaces store rooms, galleys and cargo holds or areas of high fire hazard are all covered from time to time.

**10.3.3** An adequate number of hoses to deal with the assumed fire should be realistically deployed. At some stage in the drill, they should be tested by bringing them into use, firstly with water provided by the machinery space pump and secondly with water provided by the emergency pump alone.

**10.3.4** The drill should extend, where practicable, to the testing and demonstration of the remote controls for ventilating fans, fuel pumps and fuel tank valves, the closing of openings and the appropriate isolation of electrical equipment.

**10.3.5** Fixed fire extinguishing installations should be tested to the extent practicable.

**10.3.6** Portable fire extinguishers should be available for demonstration of the manner of their use. They should include the different types applicable to different kinds of fire. At each drill, one extinguisher or more should be operated by a member of the fire party, a different member on each occasion. Extinguishers so used should be recharged before being returned to their normal location or sufficient spares should otherwise be carried for demonstration purposes.

**10.3.7** Breathing apparatus should be worn by members of the fire-fighting parties so each member in turn has experience of its use. Search and rescue exercises should be undertaken in various parts of the ship. The apparatus
10.3.8 In addition to the statutory inspection, fins appliances, fire and watertight doors, other closing appliances, and fire detection and alarm systems which have not been used in the drill should be inspected, either at the time of the drill or immediately afterwards.

10.4 Survival craft drills

10.4.1 When arranging drills reference should be made to the relevant M-notice. Arrangements for drills should take account of prevailing weather conditions.

10.4.2 Crew members taking part in life-raft or lifeboat drills should muster wearing warm outer clothing and lifejackets properly secured.

10.4.3 Where appropriate, the lowering gear and chocks should be inspected and a check made to ensure that all working parts are well lubricated.

10.4.4 When turning out davits or when bringing boats or rafts inboard under power seamen should always keep clear of any moving parts.

10.4.5 The engines on motor lifeboats should be started and run ahead and astern. Care should be taken to avoid overheating the engine and the propeller shaft stem gland. All personnel should be familiar with the engine starting procedure.

10.4.6 Hand-operated mechanical propelling gear if any should be examined and similarly tested.

10.4.7 Radio life-saving appliances should be examined and tested, and the crew instructed in their use.
10.4.8 Water spray systems, where fitted, should be tested in accordance with the lifeboat manufacturer's instructions.

10.4.9 When a drill is held in port, as many as possible of the lifeboats should be cleared and swung out. Each lifeboat should be launched and manoeuvred in the water at least once every three months. Where launching of free-fall lifeboats is impracticable, they may be lowered into the water provided that they are free-fall launched at least once every six months. However, this may be extended to twelve months provided that arrangements are made for simulated launching which will take place at intervals not exceeding six months.

10.4.10 When fast rescue boats/rescue boats are carried which are not also lifeboats, they should be launched and manoeuvred in the water every month so far as is reasonable and practicable. The interval between such drills must not exceed three months.

10.4.11 Where simultaneous off-load/on-load release arrangements are provided, great care should be exercised to ensure that the hooks are fully engaged before a boat is recovered, after it has been stowed and prior to launching.

10.4.12 Where davit-launched liferafts are carried, then on-board training, including an inflation, must be carried out at intervals not exceeding four months. Great care should be taken that the hook is properly engaged before taking the weight of the raft. The release mechanism should not be cocked until just prior to the raft landing in the water. If the raft used for the inflation is part of the ship's statutory equipment and not a special training raft, then it MUST be repacked at an approved service station.

10.4.13 Where the handle of the lifeboat winch would rotate during the operation of the winch, it should be removed before the boat is lowered on
the brake or raised with an electric motor if a handle cannot be removed, personnel should keep well clear of it.

10.4.14 Personnel in a fast rescue boat/rescue boat or survival craft being lowered should remain seated, keeping their hands inside the gunwale to avoid them being crushed against the ship's side. Lifejackets should be worn. In totally enclosed lifeboats seat belts should be secured. Only the launching crew should remain in a lifeboat being raised.

10.4.15 During drills, lifebuoys and lines should be readily available at the point of embarkation.

10.4.16 While craft are in the water crews should practice manoeuvring the vessel by oar or the appropriate motive power and should operate the water spray system when fitted on enclosed lifeboats.

10.4.17 Seamen should keep their fingers clear of the long-link when unhooking or securing blocks onto lifting hooks while the boat is in the water and particularly if there is a swell.

10.4.18 Before craft in gravity davits are recovered by power the operation of the limit switches or similar devices should be checked.

10.4.19 A portable hoist unit to recover a craft should be provided with a crutch or have an attachment to resist the torque. These should be checked. If neither device is available, the craft should be raised by hand.

10.4.20 Where liferafts are carried, instruction should be given to the ship's personnel in their launching handling and operation. Methods of boarding them and the disposition of equipment and stores on them should be explained.

10.4.21 The statutory scale of life-saving appliances must be maintained at all times. If the use of a liferaft for practice would bring equipment below the
10.5 Drills and rescue from dangerous spaces

10.5.1 There is a statutory requirement for drills simulating the rescue of an incapacitated person from a dangerous space to be carried out every two months. Each drill should be recorded in the official log book. A drill should normally be held soon after significant changes in crew members.

10.5.2 Any attempt to rescue a person who has collapsed within a space should be based on a pre-arranged plan, which should take account of the design of the individual ship. Allocation of personnel to relieve or back-up those first into the space should be borne in mind.

10.5.3 Regular drills should prove the feasibility of the ship’s rescue plan under different and difficult circumstances. The space should be made safe or for operational convenience, a non-dangerous space may be used, provided that it provides realistic conditions for an actual rescue.

10.5.4 If there are indications that the person in the space is being affected by the atmosphere, the person outside the space should immediately raise the alarm. ON NO ACCOUNT SHOULD THE PERSON STATIONED AT THE ENTRANCE TO THE SPACE ATTEMPT TO ENTER IT BEFORE ADDITIONAL HELP HAS ARRIVED. NO ONE SHOULD ATTEMPT A RESCUE WITHOUT WEARING BREATHING APPARATUS AND A RESCUE HARNESS AND WHENEVER POSSIBLE, USE OF A LIFELINE.

10.6 Assisting a casualty

10.6.1 Anyone on board ship may find a casualty, and everyone should know the basic priorities for action, the positioning of an unconscious casualty and how to give artificial respiration. These actions may save life until more qualified help arrives.

- Personnel encountering a casualty should first ensure that they are not themselves at risk.
• If necessary the casualty should be removed from danger, or danger removed from the casualty - BUT SEE BELOW ON CASUALTIES IN AN ENCLOSED SPACE

• If there is only one unconscious casualty (irrespective of the total number of casualties)
  - immediate basic treatment should be given to the unconscious casualty
  - then help should be summoned.

• If there is more than one unconscious casualty
  - help should be summoned first;
  - then appropriate treatment should be given, priority being given to any casualty with stopped breathing/heart.

• If the unconscious casualty is in an enclosed space:
  - personnel MUST NOT enter the enclosed space unless they are a trained member of a rescue team acting upon instruction.
  - help should be summoned and the master informed.
  - it must be assumed that the atmosphere in the space is unsafe. The rescue team must not enter unless wearing breathing apparatus
  - separate breathing apparatus or resuscitation equipment should also be fitted on the casualty as soon as possible.
  - the casualty should be removed quickly to the nearest safe adjacent area outside the enclosed space unless his injuries and the likely time of evacuation makes some treatment essential before he is moved.

10.6.2 Should it be necessary to remove injured persons from a hold, the best available method should be adopted but where practicable all access openings should be opened and the following equipment used where available:

(a) a manually-operated davit, suitably secured over the access opening;
(b) a cage or stretcher fitted with controlling lines at the lower end.

10.6.3 Casualties who have been exposed to a hazardous chemical should rest quietly and be observed for at least 24 hours, in case any complications arise.
10.7 Dangerous Goods

10.7.1 Emergency responses to spillage of dangerous goods are contained in the IMO Medical First Aid Guide and the IMO Emergency Procedures for Ships Carrying Dangerous Goods (EmS). Both of these are available either as free-standing documents or incorporated into the International Maritime Dangerous Goods (IMDG) Code.

General

10.7.2 Recommendations on emergency action differ depending on where the goods are stowed and whether a substance is gaseous, liquid or solid. When dealing with incidents involving flammable gases or flammable liquids, all sources of ignition (e.g. naked lights, unprotected light bulbs, electric handtools) should be avoided.

10.7.3 Normally dangerous goods in packaged form can be handled without the use of special protective clothing or equipment. If the packaging has been damaged the contents may have spilt or leaked. Under these circumstances the emergency team may have to deal with toxic corrosive or flammable solids, liquids or vapours. Vapours may arise from a spilt substance itself or as a result of the reaction between spilt substances themselves and other materials. Eye protection should always be worn, and if hazardous dust may be encountered, respiratory protection should be used - where the substance offers a significant toxic hazard this should be self-contained breathing apparatus.

Spillages

10.7.4 In general the recommendation is to wash spillages on deck overboard with copious quantities of water, and, where there is likely to be a dangerous reaction with water from as far away as practicable. Disposal of dangerous goods overboard is a matter for judgement by the master bearing
in mind that the safety of the crew has priority over pollution of the sea. If it is safe to do so, spillages and leakages of substances, articles and materials identified in the IMDG Code as MARINE POLLUTANT should be collected for safe disposal. Absorbent material should be used for liquids.

10.7.5 Spillages collected with absorbent material and kept in plastic bags or other receptacles may need to be stowed safely for ultimate disposal ashore. Collection of spillages with absorbent material under deck may not be fully effective, and precautions for entry into enclosed spaces should be observed.

10.7.6 A careful inspection for structural damage should be carried out after dealing with spillages of highly corrosive substances.

Fire

10.7.7 Water is generally recommended as the fire fighting medium for most dangerous goods at sea. However reference should be made to the relevant EmS schedules.

10.7.8 Where possible, a package should be removed from the vicinity of the fire. Where there is a possibility that the heat will cause a chemical or physical change in the substance, or affect the integrity of a package, leading to rupture and dispersal of the contents, keeping the packages cool may limit the hazard. Care should be exercised with those substances liable to polymerise, as this reaction can continue long after the removal of external heat.

10.7.9 For incidents under deck, the best course of fire fighting will usually be to batten down the hatch, exclude all ventilation and operate the fixed fire-fighting installation. Self-contained breathing apparatus should be worn when batten down the hatches or if there is any need to enter the space, for example after the fire is out.
10.7.10 For certain substances, which are highly reactive with water; only the use of dry chemical fire extinguishers is recommended. This would not preclude the use of suitable powdered inert material if available in sufficient quantity. The only alternative is the use of copious quantities of water, which will have a cooling effect on the fire, although reacting with the substance.

10.7.11 Where an EmS advises against the use of foam, this does not preclude the use of special foams.

10.7.12 The general fire-fighting recommendations for a number of dangerous goods suggest that they should be jettisoned if there is a likelihood of their involvement in a fire. Where full or nearly full container loads or other units are concerned, this may be impractical, in which case everything possible should be done to prevent the spread of fire to those containers. If, despite preventive measures, fire seems likely to affect these containers, it should be borne in mind the contents may burn with explosive violence and personnel should be withdrawn accordingly.
CHAPTER 11
SECURITY ON BOARD

11.1 Introduction

11.1.1 Shipboard security is essential in reducing the risks of terrorism, stowaways, piracy and drug smuggling. Effective security measures are not always easy and particular vigilance is required when operating in areas of increased risk. It is important to control access to the ship and to screen visitors before they are allowed on board; unauthorised personnel can be a danger to themselves and to others.

11.2 International terrorism

11.2.1 The chances of a ship experiencing a terrorist attack are very low, but attacks do happen. The main threat is from people trying to smuggle weapons and explosives on board. An appropriate sign at all access points stating that "all items brought on board this ship are liable to be searched" will act as a deterrent. Other security measures that may be considered include surveillance and detection equipment.

11.3 Stowaways

11.3.1 If there is any likelihood of stowaways, a thorough search of the vessel should be made before departure. It is easiest to send stowaways ashore in the port where they boarded, and they may hide in places which are secured at sea and which may be deficient in oxygen so that they suffocate or starve.

11.4 Piracy and Armed Robbery

11.4.1 The latest information on piracy attacks and the regions of greatest risk may be obtained free of charge from the IMB Regional Piracy Centre, Kuala Lumpur. Phone+ 60 3 201 0014, Fax+ 60 3 238 5769, Telex MA 31880 IMBPCI. The Centre also issues status reports and warning messages on the SafetyNET service of Inmarsat-C at 0001 UTC each day.
11.4.2 The dangers to a vessel can be significantly reduced if the ship’s crew take relatively simple precautions, such as remaining vigilant and keeping means of access dosed as much as possible, particularly access to crew accommodation.

11.4.3 All ships operating in waters where attacks occur should have an anti-attack plan. The plan should, *inter alia*, cover:

- the need for enhanced surveillance and the use of lighting and surveillance or detection equipment;
- crew responses if a potential attack is detected or an attack is underway;
- minimising the opportunity to steal cargo, stores or personal effects;
- ensuring the safety of the ships crew and passengers;
- details of the radio and alarm procedures to be followed, and
- the reports that should be made after an attack, or attempted attack.

11.5 General precautions

11.5.1 Owners or masters of ships operating in areas where attacks may occur are responsible for deciding what measures to take. The following notes are guidance only, based on advice from security experts:

- **Be vigilant**—the majority of attacks will be deterred if the robbers are aware that they have been observed, and that the crew has been alerted and is prepared to resist attempts to board. Ensure that crew members are constantly seen to be moving around the ship, making random rather than predictable patrols.
- **Maintain a 24 hour visual and security watch**—including short-range radar surveillance of the waters around the ship. The use of a small yacht radar fitted in such a way as to ensure complete coverage of the stern, unobscured by the radar shadow of the ship itself, should be considered. Keep a special look-out for small boats and fishing boats that pirates often use because they are difficult to observe on radar In piracy blackspots, discourage the crew from trading with locals using small craft which may approach the ship.
• **Strengthen night watches**— especially around the rear of the ship and particularly between the hours of 0100 and 0600 when most attacks occur with continuous patrols linked by "walkie-talkie" to the bridge. A drill should be established for regular two-way communication between the watch and the bridge. If possible, an additional officer should assist the normal bridge watchkeepers at night, in order to provide a dedicated radar and visual watch for small craft, which might attempt to manoeuvre alongside, and allow the watchkeepers to concentrate on normal navigational duties.

• **Seal off means of access to the ship**—fit hawse pipe plates, lock doors and hatches etc. While taking due account of the need for escape in the event of fire or other emergency, so far as possible all means of access to the accommodation should be sealed off and windows and doors of crews quarters should be kept locked at all times. Blocking access between the aft deck and the crews quarters is particularly important.

• **Establish radio (VHF) contact**— and agree emergency signals specifically for pirate attacks with:
  • crew
  • ships in the vicinity
  • shore authorities

• **Locate an emergency VHF set**—away from the master's cabin and the radio room which are often the first targets.

• **Provide adequate lighting**—deck and over-side lights, particularly at the bow and stem, should be provided to illuminate the deck and the waters beyond and to dazzle potential boarders. Searchlights should be available on the bridge wings, and torches carried by the security patrols to identify suspicious craft. Such additional lighting should not however be so bright as to obscure navigation lights or to interfere with the safe navigation of other vessels.

• **Water hose and any other equipment**—which may be used to repel potential boarders should be readily available. Keep a constant supply of water provided to the hoses. In danger areas keep the deck wash pump in operation at all times - spray water over the rear deck where it is
easiest for the attackers to board.

- **Reduce opportunities for theft**—remove all portable equipment from the deck, so far as is possible stow containers containing valuables door-to-door and in tiers, seal off access to the accommodation.
- **Establish a secure area or arras**—if large numbers of armed robbers succeed in boarding the ship, it may be essential for crew members to retreat to a secure area or areas. Depending upon the construction of the accommodation and the extent to which areas can be effectively sealed off, the secure area may be established in the accommodation as a whole, or in more restricted parts around the bridge and inside the engine room. Provision should be made, however for escape during a fire or other emergency.
- **Inform crew of the security plan**—hold a training exercise and ensure that they are fully briefed on the actions to take in the event of an attack by armed robbers.

11.5.2 If pirates succeed in boarding the vessel, resistance and confrontation are not recommended as the likelihood of violence will undoubtedly be magnified. Agreeing to the demands of the attackers will hopefully keep the unwelcome visit brief, thereby allowing full control of the ship to be regained as soon as possible. Crew members can assist passively by mentally noting as many details as possible and pooling such information later on.

11.5.3 Further advice is contained in Merchant Shipping Notice 1517.

11.6 Drugs

11.6.1 Another benefit of good security is preventing illegal drugs being smuggled aboard. Personnel should be alert to the possibility, and should be made aware of the procedures to follow if such substances are found or the activity is suspected.
11.7 Travel Advice Notices

11.7.1 Information on personal safety is available through the Foreign and Commonwealth Office (FCO) and can be obtained by contacting the FCO or British Embassies, High Commissions and Consulates in the area concerned.

11.7.2 The full range of notices is available on the FCO's World Wide Web server on the internet. The address is http://www.fco.gov.uk/. The Travel Advice Unit can also be contacted direct Monday to Friday on 0171 238 4503/4504, between 0930 and 1600 hours UTC (or between 0830 and 1500 from March to October).
CHAPTER 12
LIVING ON BOARD

12.1 General

12.1.1 The aim of the Code as a whole is to provide information and guidance aimed at improving the health and safety of those living and working on board ship. This chapter gives some more specific advice for the individual seafarer

12.2 Health and hygiene

12.2.1 It is the seafarer's responsibility to look after his own health and fitness. High standards of personal cleanliness and hygiene should be maintained.

12.2.2 On board ship, simple infections can easily be spread from one person to others. Thus preventive measures, as well as easily effective treatment, are essential.

12.2.3 Good health depends on sensible diet, adequate sleep and avoidance of recreational drugs, and substance or drug misuse, excesses of alcohol and tobacco. Regular exercise is also beneficial in maintaining good health.

12.2.4 Treatment should be sought straight away for minor injuries; cuts and abrasions should be cleaned and first aid treatment given as necessary to protect against infection. Barrier creams may help to protect exposed skin against dermatitis and also make thorough cleansing easier.

12.2.5 The risk of contracting malaria in infected areas can be much reduced by taking precautions to avoid mosquito bites, for example by using mosquito wire-screening and nets, keeping openings closed, and using anti-
mosquito preparations or insecticides. Further guidance is included in Merchant Shipping Notice M 1707.

12.2.6 Rats and other rodents may be carriers of infection and should never be handled, dead or alive, with bare hands.

**Medication**

12.2.7 Anyone taking medication, particularly any medication which may affect alertness, should notify a responsible officer so that allowance may be made in allocating tasks.

12.2.8 Drinking alcohol whilst under treatment with medication should be avoided, since even common remedies such as aspirin, seasickness tablets, anti-malarial tablets and codeine may be dangerous in conjunction with alcohol.

12.2.9 The individual has a responsibility to ensure that inoculations and vaccinations required for international voyages are kept up to date and medications for the prevention of illness, such as suitable anti-malarial tablets, are taken when required.

12.2.10 Personnel on board ship are trained and equipped to provide initial medical care for the range of health problems that may arise. If a worker develops a serious health problem or suffers a serious injury, medical advice should be obtained by radio. Where necessary, arrangements may be made to transport the sick or injured worker ashore for medical treatment. Further advice on medical care is contained in the Ship Captain's Medical Guide.

12.3 Working in hot climates

12.3.1 High humidity and heat can lead to heat exhaustion and heat stroke. Perspiration is the body's best heat control mechanism, but sweat consists mainly of salt and water which much be replaced. When working in these conditions it is advisable to drink at least 4.5 litres (8 pints) of cool (but
not iced) water daily. It is best to take small quantities at frequent intervals. Salt can be taken in food, supplemented by salt-containing drinks to prevent heat cramps. Alcohol should be avoided.

12.3.2 If working in enclosed spaces, they should be well ventilated. The minimum of light clothing should be worn, in order to allow the largest possible surface for free evaporation of sweat.

12.3.3 In tropical areas especially, exposure to the sun, particularly during the hottest part of the day, should be avoided as far as possible. When it is necessary to work in very strong sunlight, appropriate clothing offering protection to both head and body should be worn. Light cotton clothing will reflect the heat and help to keep the body temperature down.

12.3.4 When working in exceptionally hot and/or humid conditions or when wearing respiratory equipment, breaks at intervals in the fresh air or in the shade may be necessary.

12.4 Working clothes

12.4.1 Clothing should be appropriate for the working conditions. Working clothes should be close-fitting with no loose flaps, pockets or ties, which could become caught up in moving parts of machinery or on obstructions or projections. Where there is a risk of burning or scalding, as in galleys, clothing should adequately cover the body and material should be of low flammability, such as cotton or a cotton/terylene mix.

12.4.2 Shirts or overalls provide better protection if they have long sleeves. Long sleeves should not be rolled up. Long hair should be tied back and covered. Industrial or safety footwear should be worn when appropriate.

12.5 Shipboard housekeeping

12.5.1 Good housekeeping is an essential element in promoting health and safety on board;
• equipment and other items should be safely and securely stored. This
  ensures not only that defects are discovered but articles can be found
  when required;
• fixtures and fittings should be properly maintained;
• all work and transit areas should be adequately lit;
• electric circuits should not be overloaded, particularly in cabins;
• garbage and waste materials should be cleared up and disposed of
  correctly and promptly
• doors and drawers should be properly secured.
• instruction plates, notices and operating indicators should be kept clean
  and legible.

12.5.2 Many aerosols have volatile and inflammable contents. They should
never be used or placed near naked flames or other heat source even when
'empty'. Empty canisters should be properly disposed of.

12.5.3 Some fumigating or insecticidal sprays contain ingredients which,
though perhaps themselves harmless to human beings, may be decomposed
when heated. Smoking may be dangerous in sprayed atmospheres while the
spray persists.

12.6 Substances hazardous to health

12.6.1 Many substances found on ships are capable of damaging the health
of those exposed to them. They include not only recognised hazard
substances, such as dangerous goods cargoes and asbestos, but also some
domestic substances. For example caustic soda and bleaching powders or
liquids can burn or penetrate the skin. They may react dangerously with other
substances and ought never to be mixed.

12.6.2 The employer's risk assessment will identify when personnel are
working in the presence of substances hazardous to health, and evaluate the
risks (see Chapter 1 and Chapter 27). Appropriate measures should be taken
to remove, control or minimise the risk
12.6.3 It is important to read carefully all labels on chemical containers before opening them, to find out about any hazards from the contents. A chemical from an unlabelled container should never be used unless it is clearly established what it is.

12.6.4 If asbestos-containing panels, cladding or insulation become loose or are damaged in the course of a voyage, pending proper repair the exposed edges or surfaces should be protected by a suitable coating or covering to prevent asbestos fibres being released and dispersed in the air.

12.6.5 Prolonged exposure to mineral oils and detergents may cause skin problems. All traces of oil should be thoroughly washed from the skin but hydrocarbon solvents should be avoided. Inadvertent contact with toxic chemicals or other harmful substances should be reported immediately and the appropriate remedial action taken. Working clothes should be laundered frequently. Oil-soaked rags should not be put in pockets.

12.6.6 Coughs and lung damage can be caused by breathing irritant dust. The risk is usually much greater for a person who smokes than for a non-smoker.

12.6.7 Employers are required to instruct, inform and train personnel so that they know and understand the risks arising from their work, the precautions to be taken and the results of any monitoring of exposure.

12.6.8 Personnel should always comply with any control measures in place, and wear any protective clothing and equipment supplied.

12.6.9 In cases where failure of the control measures could result in serious risks to health, or where their adequacy or efficiency is in doubt, health surveillance should be undertaken.
12.7 Common personal injuries

Hand injuries

12.7.1 Gloves are a sensible precaution when handling sharp or hot objects but may easily be trapped on drum ends and on machinery. Whilst loose-fitting gloves allow hands to slip out readily, they do not give a good grip on ladders. Wet or oily gloves may be slippery and great care should be taken when working in them.

Foot injuries

12.7.2 Unsuitable footwear such as sandals, plimsolls and flip-flops, gives little protection if there is a risk of burning or scalding, for example, and may lead to trips and falls. Chapter 4 gives advice on suitable footwear. Cans should be taken to keep feet away from moving machinery, bights of ropes and hawsers.

Eye injuries

12.7.3 Great care should be taken to protect the eyes. Appropriate protective goggles should be worn for any work involving sparks, chips of wood, paint or metal and dangerous substances.

Head injuries

12.7.4 It is important to remember to duck, when stepping over coamings etc. to avoid hitting the head on the door frame.

Cuts

12.7.5 To avoid cuts all sharp implements and objects should be handled with care. They should not be left lying around where someone may accidentally cut themselves. In the galley, sharp knives and choppers should not be mixed with other items for washing up but cleaned individually and stored in a safe place. Broken glass should be swept up carefully not picked by hand.
Smoking

12.7.6 Ashtrays should always be used where provided. Matches and cigarette ends should not be thrown overboard since there is a danger that they may be blown back on board. It is dangerous to smoke in bed. The use of safety ashtrays is to be preferred.

Burns and Scalds

12.7.7 Burns and scalds are commonly caused by hot pipelines and stoves, as well as by fires. Every hot machine and every container of scalding liquid should be regarded as a hazard, capable of causing injury and adequate precautions should be taken.

12.7.8 Faulty electrical equipment can cause severe burns as well as an electric shock. Equipment should be checked before use and if something appears wrong, it should be reported.

12.7.9 In hot climates, precautions should always be taken against sun burn and heat stroke.

Misuse of Tools

12.7.10 Injury can be caused by the misuse of tools. It is important always to use the correct tool for the job, and to make sure it is used in the right way. Tools should never be left lying around where they can fall on someone, or be tripped over. After a job is finished, they should be put away in a safe place.

Manual Handling

12.7.11 It is easy to strain muscles when manual handling. Pulled muscles may be avoided if proper lifting techniques are used. Chapter 19 gives guidance on handling loads.

Mooring

12.7.12 Mooring and unmooring operations provide the circumstances for...
potentially serious accidents. Personnel should never stand in the bight of a rope or near a rope under tension, and should treat ropes on drums and bollards with the utmost care.

**Electrical hazards**

12.7.13 Unauthorised persons should not interfere with electrical fittings. No personal electrical appliance should be connected to the ship's electrical supply without approval from a responsible officer.

12.7.14 Clothing or other articles should be left to dry only in designated areas, not in machinery spaces or over or close to heaters or light bulbs. This may restrict the flow of air and so lead to overheating and fire.

12.7.15 Hand pressing irons should not be left standing on combustible materials. They should be switched off after use and stowed safely.
13.1 General Advice

13.1.1 Personnel are reminded to take care as they move about the ship. In particular the following points, though obvious, are all too often overlooked:

- personnel should watch out for tripping hazards, and protrusions such as pipes, framing etc;
- the possibility of a sudden or heavy roll of the ship should always be borne in mind;
- suitable footwear should be worn which will protect toes against accidental stubbing and falling loads, and will afford a good hold on deck and give firm support while using ladders; extra cans should be taken when using ladders whilst wearing sea boots;
- it is dangerous to swing on or vault over stair rails, guard-rails or pipes;
- injuries are often caused by jumping off hatches etc;
- manholes and other deck accesses should be kept closed when not being used; guard-rails should be erected and warning signs posted when they are open;
- spillage of oil, grease, soapy water etc, should be cleaned up as soon as practicable;
- areas made slippery by snow, ice or water should be treated with sand or some other suitable substance;
- the presence of temporary obstacles should be indicated by appropriate warning signs;
- litter and loose objects, e.g. tools, should be cleared up;
- wires and ropes should be coiled and stowed;
- lifelines should be rigged securely across open decks in rough weather;
- ladders should be secured and ladder steps kept in good condition; care should be taken when using ladders and gangways providing access to or
about the vessel, particularly when wearing gloves;
means of access to fire fighting equipment, emergency escape routes
and watertight doors should never be obstructed.

13.2 Drainage

13.2.1 Decks which need to be washed down frequently or are liable to
become wet and slippery, should be provided with effective means of draining
water away. Apart from any open deck these places include the galley, the
ship's laundry and the washing and toilet accommodation.

13.2.2 Drains and scuppers should be regularly inspected and properly
maintained.

13.2.3 Where drainage is by way of channels in the deck, these should be
suitably covered.

13.2.4 Duck boards, where used, should be soundly constructed and
designed and maintained so as to prevent accidental tripping.

13.3 Transit Areas

13.3.1 Where necessary for safety, walkways on decks should be clearly
marked, e.g. by painted lines or other means. Where a normal transit area
becomes unsafe to use for any reason, the area should be closed until it can
be made safe again.

13.3.2 Transit areas should where practicable have slip resistant surfaces.
Where an area is made slippery by snow, ice or water sand or some other
suitable substance should be spread over the area. Spillages of oil or grease
etc. should be cleaned up as soon as possible.

13.3.3 When rough weather is expected, life-lines should be rigged
securely across open decks.
13.3.4 Gratings in the deck should be properly maintained and kept closed when access to the space below is not required.

13.3.5 Permanent fittings which may cause hazards to movement, e.g. pipes, single steps, framing, door arches, top and bottom rungs of ladders, should be made conspicuous by use of contrasting colouring, marking, lighting or signing. Temporary obstacles can also be hazardous and, if they are to be there for some time, they should be marked by appropriate warning signs.

13.3.6 When at sea, any gear or equipment stowed to the side of a passageway or walkway should be securely fixed or lashed against the movement of the ship.

13.3.7 Litter and loose objects, e.g. tools, should not be left lying around. Wires and ropes should be stowed and coiled so as to cause least obstruction.

13.3.8 Particular attention should be given to areas to which shore-based workers and passengers have access, especially on deck, as they will be less familiar with possible hazards.

13.3.9 When deck cargo is being lashed and secured, special measures may be needed to ensure safe access to the top of, and across, the cargo.

13.4 Lighting

13.4.1 The level of lighting should be such as to enable obvious damage to, or leakage from, packages to be seen. When there is a need to read labels or container plates or to distinguish colours the level of lighting should be adequate to allow this, or other means of illumination should be provided.

13.4.2 Lighting should be reasonably constant and arranged to minimise glare and dazzle, the formation of deep shadows and sharp contrasts in the level of illumination between one area and another.
13.4.3 Where visibility is poor, e.g. due to fog, clouds of dust, or steam, which could lead to an increase in the risks of accidents occurring, the level of lighting should be increased above the recommended minimum.

13.4.4 Lighting facilities should be properly maintained. Broken or defective lights should be reported to the responsible person and repaired as soon as practicable.

13.4.5 Before leaving an illuminated area or space a check should be made that there are no other persons remaining within that space before switching off or removing lights.

13.4.6 Unattended openings in the deck should either be kept illuminated or be properly or safely closed before lights are switched off.

13.4.7 When portable or temporary lights are in use, the light supports and leads should be arranged, secured or covered so as to prevent a person tripping, or being hit by moving fittings, or walking into cables or supports. Any slack in the leads should be coiled. The leads should be kept clear of possible causes of damage e.g. running gear moving parts of machinery, equipment and loads. If they pass through doorways, the doors should be secured open. Leads should not pass through doors in watertight bulkheads or fire door openings when the ship is at sea. Portable lights should never be lowered or suspended by their leads.

13.4.8 Where portable or temporary lighting has to be used fittings and leads should be suitable and safe for the intended usage. To avoid risks of electric shock from mains voltage, the portable lamps used in damp or humid conditions should be of low voltage, preferably 12 volts, or other suitable precaution taken.
13.5 Guarding of Openings

13.5.1 Hatchways open for handling cargo or stores, through which persons may fall or on which they may trip, should be closed as soon as work stops, except during short interruptions or where they cannot be closed without prejudice to safety or mechanical efficiency because of the heel or trim of the ship.

13.5.2 The guard-rails or fencing should have no sharp edges and should be properly maintained. Where necessary, locking devices and suitable stops or toe-boards should be provided. Each course of rails should be kept substantially horizontal and taut throughout their length.

13.5.3 Guard-rails or fencing should consist of an upper rail at a height of 1 metre and an intermediate rail at a height of 0.5 metres. The rails may consist of taut wire or taut chain.

13.5.4 Where the opening is a permanent access way, or where work is in progress which could not be carried out with the guards in place, guards do not have to be fitted during short interruptions in the work - e.g. for meals, although warning signs should be displayed where the opening is a risk to other persons.

13.6 Watertight doors

13.6.1 All members of the crew who would have occasion to use any watertight doors should be instructed in their safe operation.

13.6.2 Particular care should be taken when using power operated watertight doors which have been dosed from the bridge. If opened locally under these circumstances the door will re-close automatically with a force sufficient to crush anyone in its path as soon as the local control has been released. The local controls are positioned on each side of the door so that a person passing through may open the door and then reach to the other
control to keep the door in the open position until transit is complete. As both hands are required to operate the controls, no person should attempt to carry any load through the door unassisted.

13.6.3 Notices clearly stating the method of operation of the local controls should be prominently displayed on both sides of each watertight door

13.6.4 No-one should attempt to pass through a watertight door when it is closing and/or the warning bell is sounding.

13.7 Ship-board Vehicles

13.7.1 Persons selected to drive ships’ powered vehicles and powered mobile lifting appliances should be fit to do so, and have been trained for the particular category of vehicle or mobile lifting appliance to be driven, and tested for competence.

13.7.2 Authorisations of crew members should either be individually issued in writing or comprise a list of persons authorised to drive. These authorisations may need to be made available for inspection to Dock Authorities.

13.7.3 Maintenance of ships’ powered vehicles and powered mobile lifting appliances should be undertaken in accordance with manufacturers’ instructions.

13.7.4 Drivers of ships’ powered vehicles and powered mobile lifting appliances should exercise extreme care, particularly when reversing.
14.1 Health and hygiene

14.1.1 Catering staff should have a basic knowledge of food safety and hygiene as they have a responsibility for ensuring that high standards of personal hygiene and cleanliness of the galley, pantry and mess rooms are always maintained. Further guidance is contained in MGN61 (M+F).

14.1.2 There should be no smoking in galleys, pantries, store rooms or other places where food is prepared.

14.1.3 Hands and fingernails should be washed before handling food using a dedicated hand-basin, a bacterial liquid soap from a dispenser and disposable towels or another individual method of hand drying such as a hot air dryer. It is important to wash hands after using the toilet, blowing your nose, or handling refuse or contaminated food.

14.1.4 All cuts, however small, should be reported immediately and receive first aid attention to prevent infection.

14.1.5 An open cut, burn or abrasion should be covered with a coloured waterproof dressing which must be changed regularly. Anyone with a septic cut or a boil, stye etc., should stop working with food until it is completely healed.

14.1.6 Illness, rashes or spots, however mild should be reported immediately the symptoms appear.

14.1.7 A person suffering from diarrhoea and vomiting, which are signs of
food poisoning, should not work in food handling areas until medical clearance has been given.

14.1.8 Catering staff should wear clean protective clothing when handling food and preparing meals.

14.1.9 Catering staff should not wear jewellery apart from a plain wedding band.

14.1.10 Cleanliness of all food, crockery, cutlery, linen, utensils, equipment and storage is vital. Cracked or chipped crockery and glassware should be destroyed. Foodstuffs which may have come into contact with broken glass or broken crockery should be thrown away.

14.1.11 As a general rule fresh fruit and salad should be thoroughly washed in fresh water before being eaten.

14.1.12 Foodstuffs and drinking water should not be stored where germs can thrive. Frozen food must be defrosted in controlled conditions, i.e. an area entirely separate from other foods in cool conditions. Food should be prevented from sitting in the thaw liquid by placing it on grids in a container or on a shelf. Deep frozen food which has been defrosted is not to be refrozen.

14.1.13 The risks of cross contamination should be eliminated by thoroughly stripping and cleaning the relevant parts of equipment when successive different foods are to be used (especially raw and cooked foods). It is important to wash hands after handling raw meat, fish, poultry or vegetables.

14.1.14 Raw food should be kept apart from cooked food or food that requires no further treatment before consumption (e.g. milk). Separate refrigerators are preferred although if stored in the same unit, the raw food
must always be placed at the bottom to avoid drips contaminating ready prepared food. Food should also be covered to prevent drying out, cross-contamination and absorption of odour;

14.1.15 Separate work surfaces, chopping boards and utensils should be set aside for the preparation of raw meat and must not be used for the preparation of foods which will be eaten without further cooking. Colour coding is an established way of ensuring separation between the two activities.

14.1.16 Ensure all food is kept at the correct temperature to prevent the multiplication of bacteria.

14.1.17 Crockery and glassware should not be left submerged in washing up water where it may easily be broken and cause injury. Such items should be washed up individually as should knives and any utensils or implements with sharp edges. Crockery, glassware and utensils should preferably be washed in a dishwasher where much higher temperatures can be achieved compared with hand washing.

14.1.18 Some domestic cleaning substances contain bleach or caustic soda (sodium hydrochloride) whilst some disinfectants contain carbolic acid (phenol). These substances can burn the skin and they are poisonous if swallowed. They should be treated with caution and should not be mixed together or used at more than the recommended strength. Inadvertent contact with toxic chemicals or other harmful substances should be reported immediately and the appropriate remedial action taken. Cleaning substances, materials, should be stored in a suitable locker/cupboard separate from food handling areas.

14.1.19 Food waste, empty food containers and other garbage are major sources of pollution and disease and should be placed in proper storage facilities safely away from foodstuffs. Their discharge into the sea is prohibited.
14.2 Slips, falls and tripping hazards

14.2.1 Suitable footwear, preferably with slip-resistant soles, should be worn at all times. A large proportion of injuries to catering staff arise because they wear unsuitable footwear such as sandals, plimsolls or flip-flops, which do not grip greasy decks or protect the feet from burns or scalds if hot or boiling liquids are spilt.

14.2.2 Decks, and particularly stairs, should be regularly maintained so that cracks and worn areas do not cause a trip hazard.

14.2.3 Decks and gratings should be kept clear from grease, rubbish and ice etc. to avoid slipping. Any spillage should be cleared up immediately.

14.2.4 Broken glass or crockery should be cleared away with a brush and pan - never with bare hands.

14.2.5 The area of deck immediately outside the entrance to refrigerated rooms should have an anti-slip surface.

14.2.6 Care should always be taken when using stairs and companionways; one hand should always be kept free to grasp the handrail.

14.2.7 Trays, crates, cartons etc should not be carried in such fashion that sills, storm steps or other obstructions in the path are obscured from view.

14.2.8 Lifts that involve reaching up too high or too low should be avoided. Personnel should not stand on unsecured objects to reach articles which are out of reach.

14.3 Galley stoves, steamboilers and deep fat fryers

14.3.1 Ships using oil fired stoves should operate safety procedures
according to manufacturers’ instructions, particularly when lighting the stove. Instructions should be clearly displayed in the galley.

14.3.2 Catering staff should not attempt to repair electric or oil-fired ranges or electric microwave ovens. Defects should always be reported so that proper repairs may be made. The equipment should be kept out of use and a warning notice displayed until it has been repaired.

14.3.3 The indiscriminate use of water in hosing down and washing equipment in the galley can be very dangerous, particularly when there are electrical installations. Whenever the galley deck is washed down, power to an electric range and all electric equipment should be switched off and isolated from the supply and water kept from contact with the electric equipment.

14.3.4 Range guard rails should always be used in rough weather. Pots and pans should never be filled to the extent that the contents spill over when the ship rolls.

14.3.5 All catering staff should be fully instructed in avoiding burns from hot surfaces on hot serving tables, bain marie, steamers and tilting pans.

14.3.6 Dry cloths or pot holders and oven gloves (long enough to cover the arms) should always be used to handle hot pans and dishes. Wet cloths conduct heat quickly and may scald the hands.

14.3.7 No one should be directly in front of an oven when the door is opened - the initial heat blast can cause burns.

14.3.8 The steam supply to pressure cookers, steamers and boilers should be turned off and pressure released before their lids are opened.

14.4 LPG appliances

14.4.1 Suitable means for detecting the leakage of gas should be provided.
and securely fixed in the lower part of the galley as gas is heavier than air. A gas detector should incorporate an audible and a visible alarm, and should be tested frequently. A suitable notice, detailing the action to be taken when an alarm is given by the gas detection system should be prominently displayed.

14.4.2 Equipment should be fitted, where practicable, with an automatic gas shut-off device which operates in the event of flame failure.

14.4.3 When gas burning appliances are not in use the controls should be turned off. If they are not going to be used again for some length of time, the main regulators close to the storage bottles should be shut. Merchant Shipping Notice M984 gives further guidance on the operation of LRG appliances.

14.4.4 A safe system of working, training and supervision over lighting and operating procedures should be established.

14.4.5 Defects in joints, valves and connections can be detected by smell. Catering staff should not attempt to repair electric, oil or gas appliances.

14.5 Deep fat frying

14.5.1 Water should never be poured into hot oil; the water turns to steam, throwing the oil considerable distances. This may cause severe burns to personnel, and possibly start a fire.

14.5.2 If fat catches fire in a container the flames should be smothered using a fire blanket if practicable and the container removed from the source of heat. Otherwise a suitable fire extinguisher should be used. In no circumstances should water be used.

14.5.3 The flash point of the cooking medium should be no lower than 315°C (600°F).
14.5.4 Deep fat fryers should be provided with suitable safety lids which should be kept in position when the fryers are not in use.

14.5.5 To minimise the risk of fire from failure of the control thermostat all deep fat fryers should be fitted with a second thermostat set to provide a thermal cut-out as specified in Merchant Shipping Notice M1022.

14.5.6 Electrically operated deep fat fryers should be switched off immediately after use.

14.5.7 A safe system of work for cleaning and draining fat fryers should be established.

14.5.8 A strict schedule of cleaning for galley uptakes/grills should be established so that fat deposits are not allowed to accumulate.

14.5.9 A notice should be prominently displayed detailing the action to be taken in the event of a deep fat fryer fire.

14.6 Microwave ovens

14.6.1 When microwave ovens are used, it is important to ensure that the food is cooked thoroughly and evenly. This is particularly important with deep frozen foods which should be thoroughly defrosted before cooking. The instructions issued by the oven manufacturers should be followed carefully in conjunction with the information on the packaging of the foodstuff.

14.6.2 No microwave oven should be operated if the oven door or its interlock is out of use, the door broken or ill-fitting or the door seals damaged. Each microwave oven should carry a permanent notice to this effect Microwave radiation checks should be carried out at regular intervals.
14.7 Catering equipment

14.7.1 Except under the supervision of an experienced person, no one should use catering equipment unless trained in its use and fully instructed in the precautions to be observed.

14.7.2 Dangers parts of catering machines should be properly guarded and the guards kept in position whenever the machine is used.

14.7.3 Any machine or equipment that is defective in its parts, guards or safety devices should be reported and taken out of service, with power disconnected, until repaired.

14.7.4 When a power-operated machine has to be cleaned or a blockage in it removed, it should be switched off and isolated from the power supply. Some machines will continue to run down for a while thereafter, and care should be taken to see that dangerous parts have come to rest before cleaning is begun.

14.7.5 A safe procedure for cleaning all machines should be established and carefully followed. Every precaution should be taken where cutting edges, for example on slicing machines, are exposed by the necessary removal of guards to allow thorough cleaning. Guards should be properly and securely replaced immediately the job is done.

14.7.6 Unless properly supervised, a person under 18 years of age should not clean any power operated or manually driven machine with dangerous parts which may move during the cleaning operation.

14.7.7 Appropriate implements, not fingers, should be used to feed materials into processing machines.

14.7.8 Electrical equipment should not be used with wet hands.
14.7.9 All electrical equipment should be regularly inspected by a competent person.

14.8 Knives, saws, choppers etc.

14.8.1 Sharp implements should be treated with respect and handled with care at all times. They should not be left lying around working areas where someone may accidentally cut themselves. They should not be mixed in with other items for washing up but cleaned individually and should be stored in a safe place.

14.8.2 Knives should be kept tidily in secure racks or sheaths when not in use.

14.8.3 The handles of knives, saws, choppers etc should be securely fixed and kept clean and free from grease. The cutting edges should be kept clean and sharp.

14.8.4 Proper can openers in clean condition should be used to open cans; improvisations are dangerous and may leave jagged edges on the can.

14.8.5 Chopping meat requires undivided attention. The chopping block must be firm, the cutting area of the meat well on the block and hands and body clear of the line of strike. There must be adequate room for movement and no obstructions in the way of the cutting stroke. Particular care is required when the vessel is moving in a seaway.

14.8.6 Foodstuffs being chopped with a knife should not be fed towards the blade with outstretched fingers. Fingertips should be bent inwards towards the palm of the hand with the thumb overlapped by the forefinger. The knife blade should be angled away from the work and so away from the fingers.
14.8.7 A falling knife should be left to fall, not grabbed.

14.8.8 A meat saw should be guided by the forefinger of the free hand over the top of the blade. The use of firm even strokes will allow the blade to feel its way; if forced, the saw may jump possibly causing injury.

14.9 Refrigerated rooms and store rooms

14.9.1 All refrigerated room doors should be fitted with means both of opening the door and of sounding the alarm from the inside.

14.9.2 A routine testing of the alarm bell and checking of the door clasps and inside release should be carried out regularly, at least at weekly intervals.

14.9.3 Those using the refrigerated room should make themselves familiar with the operation, in darkness, of the inside release for the door and the location of the alarm button.

14.9.4 All refrigerated room doors should be fitted with an arrangement of adequate strength to hold the door open in a seaway and should be secured open while stores are being handled. These doors are extremely heavy and can cause serious injury to a person caught between the door and the jamb.

14.9.5 Anyone going into a refrigerated room should take the padlock, if any, inside with him. Another person should be informed.

14.9.6 Cold stores or refrigerated rooms should not be entered if it is suspected that there has been a leakage of refrigerant A warning notice to this effect should be posted outside the doors.

14.9.7 All stores and crates should be stowed securely so that they do not shift or move in a seaway.
14.9.8 When wooden boxes or crates are opened, protruding fastenings should be removed or made safe.

14.9.9 Metal hooks not in use should be stowed in a special container provided for the purpose. Where hooks cannot be removed they should be kept clear.
15.1 Introduction

15.1.1 This chapter suggests some control measures which may be taken to protect those who may be put at risk in some key areas on board ship. Such measures should be based on the findings of the risk assessment.

15.2 Working aloft and outboard

15.2.1 Personnel working at a height may not be able to give their full attention to the job and at the same time guard themselves against falling. Proper precautions should therefore always be taken to ensure personal safety when work has to be done aloft or when working outboard. It must be remembered that the movement of a ship in a seaway and extreme weather conditions even when alongside, will add to the hazards involved in work of this type. A stage or ladder should also be utilised when work is to be done beyond normal reach.

15.2.2 Personnel under 18 years of age or with less than 12 months experience at sea, should not work aloft unless accompanied by an experienced person or otherwise adequately supervised.

15.2.3 Personnel working aloft (above 2 metres) should wear a safety harness with lifeline or other arresting device at all times (see section 4.10). A safety net should be rigged where necessary and appropriate. Additionally, where work is done overside, buoyancy garments should be worn and a lifebuoy with sufficient line attached should be kept ready for immediate use. Personnel should be under observation from a person on deck.

15.2.4 Other than emergency situations personnel should not work overside whilst the vessel is underway if such work has to be undertaken.
lifeboats or rescue boats should be ready for immediate use. Any such work should be closely monitored/watched by a responsible person.

**15.2.5** Before work is commenced near the ship's whistle, the officer responsible should ensure that power is shut off and warning notices posted on the bridge and in the machinery spaces.

**15.2.6** Before work is commenced on the funnel, the officer responsible should inform the duty engineer to ensure that steps are taken to reduce as far as practicable the emission of steam, harmful gases and fumes.

**15.2.7** Before work is commenced in the vicinity of radio aerials, the officer responsible should inform the radio room or person in charge of radio equipment so that no transmissions are made whilst there is risk to personnel. A warning notice should be put up in the radio room.

**15.2.8** Where work is to be done near the radar scanner the officer responsible should inform the officer on watch so that the radar and scanner are isolated. A warning notice should be put on the set until the necessary work has been completed.

**15.2.9** On completion of the work of the type described above, the person responsible should, where necessary, inform the appropriate person that the precautions taken are no longer required and that warning notices can be removed.

**15.2.10** Work aloft (above 2 metres) should not be carried out in the vicinity of cargo working, unless it is essential. Care must always be taken to avoid risks to anyone working or moving below. Suitable warning notices should be displayed. Tools and stores should be sent up and lowered by line in suitable containers which should be secured in place for stowage of tools or materials not presently being used.
15.2.11 No one should place tools where they can be accidentally knocked down and may fall on someone below, nor should tools be earned in pockets from which they may easily fall. When working aloft it is often best to wear a belt designed to hold essential tools securely in loops.

15.2.12 Tools should be handled with extra care when hands are cold and greasy and where the tools themselves are greasy.

15.3 Portable ladders

15.3.1 A portable ladder should only be used where no safer means of access is reasonably practicable. It is very important that the ladder is checked regularly by a competent person.

15.3.2 Wooden ladders should not be painted or treated so as to hide defects and cracks. When not in use they should be stowed safely in a dry ventilated space away from any heat source.

15.3.3 Portable ladders should be pitched between 60° and 75° from the horizontal, on a firm base, properly secured against slipping or shifting sideways and be so placed as to afford a clearance of at least 150 mm behind the rungs. Where practicable the ladder should extend to at least 1 metre above any upper landing place unless there are other suitable handholds.

15.3.4 When portable extending ladders are in use, there should be sufficient overlap between the extensions.

15.3.5 Personnel negotiating a ladder should use both hands, and not attempt to carry tools or equipment in their hands.

15.3.6 Planks should not be supported on rungs of ladders to be used as staging, nor should ladders be used horizontally for such purposes.
15.3.7 Working from ladders should be avoided as far as possible, but where necessary, and for heights greater than 2 metres above base level, personnel must use a safety harness with lifeline secured above the work position.

15.4 Cradles and stages

15.4.1 Cradles should be at least 430 mm (17 inches) wide and fitted with guard rails or stanchions with taut ropes to a height of one metre (39 inches) from the floor. Toeboards add safety.

15.4.2 Planks and materials used for the construction of ordinary plank stages must be carefully examined to ensure adequate strength and freedom from defect.

15.4.3 Wooden components of staging should be stowed in a dry, ventilated space and not subjected to heat.

15.4.4 Ancillary equipment, lizards, blocks and gantlines should be thoroughly examined before use.

15.4.5 When a stage is rigged overside, the two gantlines used in its rigging should be at least long enough to trail into the water to provide additional lifelines should the operator fall. A lifebuoy and line should still be kept ready at a close position.

15.4.6 Gantlines used for working aloft should not be used for any other purpose and should be kept clear of sharp edges when in use.

15.4.7 The anchoring points for lines, blocks and lizards must be of adequate strength and, where practicable, be permanent fixtures to the ship's structure. Integral lugs should be hammer tested. Portable rails or stanchions must not be used as anchoring points. Any anchoring points should be
treated as lifting points and should be inspected/tested in accordance with Chapter 21 of this Code.

**15.4.8** Stages and staging which are not suspended should always be secured against movement. Hanging stages should be restricted against movement to the extent practicable.

**15.4.9** In machinery spaces, staging and its supports should be kept clear of contact with hot surfaces and moving parts of machinery. In the engine room, a crane gantry should not be used directly as a platform for cleaning or painting, but can be used as the base for a stable platform if suitable precautions are taken (see section 24.3.6).

**15.4.10** Where personnel working from a stage are required to raise or lower themselves, great care must be taken to keep movements of the stage small and closely controlled.

**15.5 Bosun’s chair**

**15.5.1** When used with a gantline the chair should be secured to it with a double sheet bend and the end seized to the standing part with adequate tail.

**15.5.2** Hooks should not be used to secure bosun’s chairs unless they are of the type which because of their special construction cannot be accidentally dislodged, and have a marked safe working load which is adequate for the purpose.

**15.5.3** On each occasion that a bosun’s chair is rigged for use, the chain gantlines and lizards must be thoroughly examined, and renewed if there is any sign of damage, and load tested to at least 4 times the load they will be required to lift before a person is hoisted.

**15.5.4** When a chair is to be used for riding topping lifts or stays, it is essential that the bow of the shackle, and not the pin, rides on the wire. The pin in any case should be seized.
15.5.5 When it is necessary to haul a person aloft in a bosun's chair it should be done only by hand; a winch should not be used.

15.5.6 If a worker is required to lower himself while using a bosun's chair, he should first frap both parts of the gantline together with a suitable piece of line to secure the chair before making the lowering hitch. The practice of holding on with one hand and making the lowering hitch with the other is dangerous. It may be prudent to have someone standing by to tend the lines.

15.6 Working from punts
15.6.1 Punts should be stable and provided with suitable fencing. Unsecured trestles and planks should not be used to give additional height.

15.6.2 The person in charge should have due regard to the strength of tides and other hazards, such as wash from passing vessels, before a punt is put to use.

15.6.3 When work is to be done at or near the stem or other propeller aperture, the person in charge should inform the duty engineer and deck officers so that warning notices are put up in the engine room, at the controls and on the bridge.

15.6.4 The duty engineer and deck officers should also be informed by the person in charge when seamen are working below ship's side discharges so they are not used until the work is completed. Notices to this effect should be attached to the relevant control valves and not taken off until those working are reported clear.

15.7 Work in machinery spaces
15.7.1 Merchant Shipping regulations require every dangerous part of a ship's machinery to be securely guarded unless it is so positioned or constructed that it is as safe as if it were securely guarded or is otherwise
safeguarded. Guidance on the interpretation of these Regulations is given in Merchant Shipping Notice 1355.

15.7.2 All steam pipes, exhaust pipes and fittings which by their location and temperature present a hazard, should be adequately lagged or otherwise shielded. The insulation of hot surfaces should be properly maintained, particularly in the vicinity of oil systems.

15.7.3 Personnel required to work in machinery spaces which have high noise levels should wear suitable hearing protectors (see section 4.6).

15.7.4 Where a high noise level in a machinery space, or the wearing of ear protectors, may mask an audible alarm, a visual alarm of suitable intensity should be provided, where practicable, to attract attention and indicate that an audible alarm is sounding. This should preferably take the form of a light or lights with rotating reflectors. Guidance may be found in the IMO Code on Alarms and Indicators.

15.7.5 The source of any oil leakage should be located and repaired as soon as practicable.

15.7.6 Waste oil should not be allowed to accumulate in the bilges or on tank tops. Any leakage of fuel, lubricating and hydraulic oil should be disposed of in accordance with Oil Pollution Regulations at the earliest opportunity. Tank tops and bilges should, wherever practicable, be painted a light colour and kept clean and well-illuminated in the vicinity of pressure oil pipes so that leaks may be readily located.

15.7.7 Great caution is required when filling any settling or other oil tank to prevent it overflowing, especially in an engine room where exhaust pipes or other hot surfaces are directly below. Manholes or other openings in the tanks should always be secured so that should a tank be overfilled the oil is directed to a safe place through the overflow arrangements.
15.7.8 Particular care should be taken when filling tanks which have their sounding pipes in the machinery spaces to ensure that weighted cocks are closed. In no case should a weighted cock on a fuel or lubricated oil tank sounding pipe or on a fuel, lubricating or hydraulic oil tank gauge be secured in the open position.

15.7.9 Engine room bilges should at all times be kept clear of rubbish and other substances so that mud-boxes are not blocked and the bilges may be readily and easily pumped.

15.7.10 Remote controls fitted for stopping machinery or pumps or for operating oil-tank quick-closing valves in the event of fire, should be tested regularly to ensure that they are functioning satisfactorily. This also applies to the controls on fuel storage daily service tanks (other than double bottoms) and lubricating oil tanks.

15.7.11 Cleaning solvents should always be used in accordance with manufacturers' instructions and in an area that is well ventilated.

15.7.12 Care should be taken to ensure that spare gear is properly stowed and items of machinery under overhaul safely secured so that they do not break loose and cause injury or damage even in the heaviest weather.

15.8 Boilers

15.8.1 A notice should be displayed at each boiler setting out operating instructions. Information provided by the manufacturers of the oil-burning equipment should be displayed in the boiler room.

15.8.2 To avoid the danger of a blowback when lighting boilers, the correct flashing up procedure should always be followed:

(a) there should be no loose oil on the furnace floor;
(b) the oil should be at the correct temperature for the grade of oil being
used; if not, the temperature of the oil must be regulated before lighting is attempted;

(c) the furnace should be blown through with air to clear any oil vapour;
(d) the torch, specially provided for the purpose, should always be used for lighting a burner unless an adjacent burner in the same furnace is already lit; other means of ignition, such as introducing loose burning material into the furnace, should not be used. An explosion may result from attempts to relight a burner from the hot brickwork of the furnace;
(e) if all is in order the operator should stand to one side, and the lighted torch inserted and fuel turned on. Care should be taken that there is not too much oil on the torch which could drip and possibly cause a fire;
(f) if the oil does not light immediately, the fuel supply should be turned off and the furnace ventilated by allowing air to blow through for two or three minutes to clear any oil vapour before a second attempt to light is made. During this interval the burner should be removed and the atomizer and tip inspected to verify that they are in good order;
(g) if there is a total flame failure while the burner is alight, the fuel supply should be turned off.

15.8.3 The avenues of escape from the boiler fronts and firing spaces should be kept clear

15.8.4 Where required to be fitted, the gauge glass cover should always be in place when the glass is under pressure. If a gauge glass or cover needs to be replaced or repaired, the gauge should be shut off and drained before the cover is removed.

15.9 Unmanned machinery spaces

15.9.1 Personnel should never enter or remain in an unmanned machinery space alone, unless they have received permission from, or been instructed by the engineer officer in charge at the time. They may only be sent to carry out a specific task which they may be expected to complete in a comparatively short time. Before entering the space, at regular intervals whilst in the space
and on leaving the space, they must report by telephone, or other means provided, to the duty deck officer. Before they enter the space, the method of reporting should be clearly explained. Consideration should be given in appropriate instances to using a ‘permit-to-work’ (see section 16.2).

15.9.2 If it is the engineer officer in charge who enters the machinery space alone, he too should report to the deck officer.

15.9.3 Notice of safety precautions to be observed by personnel working in unmanned machinery spaces should be clearly displayed at all entrances to the space. Warning should be given that in unmanned machinery spaces there is a likelihood of machinery suddenly starting up.

15.9.4 Unmanned machinery spaces should be adequately illuminated at all times.

15.9.5 When machinery is under bridge control, the bridge should always be advised when a change in machinery setting is contemplated by the engine room staff, and before a reversion to engine room control of the machinery.

15.10 Refrigeration machinery

15.10.1 Adequate information should be available on each vessel, laying down the operation and maintenance safeguards of the refrigeration plant, the particular properties of the refrigerant and the precautions for its safe handling.

15.10.2 No one should enter a refrigerated compartment without first informing a responsible officer.

15.10.3 The compartment or flat in which refrigeration machinery is fitted should be adequately ventilated and illuminated. Where fitted, both the supply and exhaust fans to and from compartments in which refrigeration machinery is situated should be kept running at all times. Inlets and outlets should be
kept unobstructed. When there is any doubt as to the adequacy of the
ventilation, a portable fan or other suitable means should be used to assist in
the removal of toxic gases from the immediate vicinity of the machine.

15.10.4 Should it be known or suspected that the refrigerant has leaked into
any compartments, no attempt should be made to enter those compartments
until a responsible officer has been advised of the situation. If it is necessary
to enter the space, it should be ventilated to the fullest extent practicable and
the personnel entering should wear approved breathing apparatus. A person
should be stationed in constant attendance outside the space, also with
breathing apparatus (see Chapter 17).
CHAPTER 16
PERMIT TO WORK SYSTEMS

16.1 Introduction
16.1.1 Based on the findings of the risk assessment, appropriate control measures should be put into place to protect those who may be affected. This Chapter covers permits to work, which are suggested control measures for particular operations.

16.2 Permit-to-work systems
16.2.1 There are many types of operation on board ship where the routine actions of one person may inadvertently endanger another or when a series of action steps need to be taken to ensure the safety of those engaged in a specific operation. In all instances it is necessary, before the work is done, to identify the hazards and then to ensure that they are eliminated or effectively controlled. Ultimate responsibility rests with the employer to see that this is done.

16.2.2 The permit to work system consists of an organised and predefined safety procedure. A permit-to-work does not in itself make the job safe, but contributes to measures for safe working.

16.2.3 The particular circumstances of individual ships will determine when permit-to-work systems should be used. In using a permit to work, the following principles apply:
(a) The permit should be relevant and as accurate as possible. It should state the location and details of the work to be done, the nature and results of any preliminary tests undertaken, the measures undertaken to make the job safe and the safeguards that need to be taken during the operation.
(b) The permit should specify the period of its validity (which should not exceed 24 hours) and any time limits applicable to the work which it authorises.

(c) Only the work specified on the permit should be undertaken.

(d) Before signing the permit, the authorising officer should ensure that all measures specified as necessary have in fact been taken.

(e) The authorising officer retains responsibility for the work until he has either cancelled the permit or formally transferred it to another authorised person who should be made fully conversant with the situation. Anyone who takes over, either as a matter of routine or in an emergency, from the authorising officer, should sign the permit to indicate transfer of full responsibility.

(f) The person responsible for carrying out the specified work should countersign the permit to indicate his understanding of the safety precautions to be observed.

(g) On completion of the work, that person should notify the responsible officer and get the permit cancelled.

16.2.4 The annex to this chapter gives examples of permits-to-work for various types of activity. The examples show the headings that may need to be covered. These should be adapted to the circumstances of the individual ship or the particular job to be carried out, in the light of the risk assessment.
**ANNEX 16.1**

**SUGGESTED MINIMUM HEADINGS FOR INCLUSION IN PERMITS-TO-WORK**

Separate permits may be developed for each of the types of activity below.

Note: The Authorising Officer should indicate the sections applicable by ticks in the left-hand boxes next to headings, deleting any sub-heading not applicable. He should insert the appropriate details when the Sections for Other Work or Additional precautions are used.

The Authorised Person should tick each applicable right-hand box as he makes his check.

<table>
<thead>
<tr>
<th>Work to be done (description)</th>
<th>Location (designation of space, machinery etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorised person in charge</td>
<td>Crew detailed (names)</td>
</tr>
<tr>
<td>Period of validity of permit</td>
<td></td>
</tr>
<tr>
<td>(should not exceed 24 hours)</td>
<td></td>
</tr>
</tbody>
</table>

**Authorising Officer**

(signed) (time) (date)

Has a risk assessment of the proposed work been carried out?

<table>
<thead>
<tr>
<th>Entry into enclosed or confined space</th>
<th>Checked</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Space thoroughly ventilated</td>
<td>1</td>
</tr>
<tr>
<td>2 Atmosphere tested and found safe</td>
<td>2</td>
</tr>
<tr>
<td>3 Space secured for entry</td>
<td>3</td>
</tr>
<tr>
<td>4 Rescue and resuscitation equipment available at entrance</td>
<td>4</td>
</tr>
<tr>
<td>5 Testing equipment available for regular checks</td>
<td>5</td>
</tr>
<tr>
<td>6 Responsible person in attendance at entrance</td>
<td>6</td>
</tr>
<tr>
<td>7 Communication arrangements made between person at entrance and those entering</td>
<td>7</td>
</tr>
<tr>
<td>8 Access and illumination adequate</td>
<td>8</td>
</tr>
<tr>
<td>9 All equipment to be used is of appropriate type</td>
<td>9</td>
</tr>
<tr>
<td>10 Personal protective equipment to be used:</td>
<td></td>
</tr>
<tr>
<td>Hard hat, safety harness as necessary</td>
<td>10</td>
</tr>
<tr>
<td>11 When breathing apparatus is being used</td>
<td></td>
</tr>
<tr>
<td>(i) Familiarity of user with apparatus is confirmed</td>
<td>11 (i)</td>
</tr>
<tr>
<td>(ii) Apparatus has been tested and found to be satisfactory</td>
<td>11 (ii)</td>
</tr>
</tbody>
</table>
### Machinery or equipment

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong></td>
<td>Removed from service/isolated from sources of power or heat</td>
</tr>
<tr>
<td><strong>2</strong></td>
<td>All relevant personnel informed</td>
</tr>
<tr>
<td><strong>3</strong></td>
<td>Warning notices displayed</td>
</tr>
</tbody>
</table>

**Checked**

### Hotwork

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong></td>
<td>Area clear of dangerous material and gas-free</td>
</tr>
<tr>
<td><strong>2</strong></td>
<td>Adjacent areas checked</td>
</tr>
<tr>
<td><strong>3</strong></td>
<td>Ventilation adequate</td>
</tr>
<tr>
<td><strong>4</strong></td>
<td>Fire watchman posted/instructed</td>
</tr>
<tr>
<td><strong>5</strong></td>
<td>Equipment in good order</td>
</tr>
<tr>
<td><strong>6</strong></td>
<td>Fire appliances in good order and accessible</td>
</tr>
<tr>
<td><strong>7</strong></td>
<td>Personal protective equipment: Hard hats, overalls, leather gauntlets/apron, safety spectacles, visor</td>
</tr>
</tbody>
</table>

**Checked**

### Working aloft/overside

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong></td>
<td>Duty officer informed</td>
</tr>
<tr>
<td><strong>2</strong></td>
<td>Warning notices posted</td>
</tr>
<tr>
<td><strong>3</strong></td>
<td>On-deck supervisor identified</td>
</tr>
<tr>
<td><strong>4</strong></td>
<td>Equipment in good order</td>
</tr>
<tr>
<td><strong>5</strong></td>
<td>Work on funnel: - advise Duty Engineer - isolate whistle, if appropriate</td>
</tr>
<tr>
<td><strong>6</strong></td>
<td>Work near Radar Scanners/Radio Aerials: - isolate radar and scanner/radio room notified - notices placed to stop use of radar/radio</td>
</tr>
<tr>
<td><strong>7</strong></td>
<td>Work overside - advise duty officer/engineer - lifebuoy and line ready</td>
</tr>
<tr>
<td><strong>8</strong></td>
<td>Personal protective equipment required: - safety helmet - safety harness and line attached to strong point - lifejacket</td>
</tr>
<tr>
<td><strong>9</strong></td>
<td>As necessary, all tools to be taken aloft secured by lanyard/ bag/ belt</td>
</tr>
</tbody>
</table>

**Checked**

### Work in unmanned machinery spaces

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong></td>
<td>Permission from engineer officer in charge</td>
</tr>
<tr>
<td><strong>2</strong></td>
<td>Reporting procedures established and checked</td>
</tr>
<tr>
<td><strong>3</strong></td>
<td>Warning notices in place</td>
</tr>
<tr>
<td><strong>4</strong></td>
<td>Bridge notified</td>
</tr>
<tr>
<td><strong>5</strong></td>
<td>Machinery space adequately lit</td>
</tr>
</tbody>
</table>

**Checked**

---

MSCP01/Ch16/Rev1.01/Page 4
Other work  
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Further control measures identified by the risk assessment  
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Certificate of checks:  
I am satisfied that all precautions have been taken and that safety arrangements will be maintained for the duration of the work.

Authorised person in charge  
(Signed)

Cancellation of certificate;  
The work has been completed/cancelled and all persons under my supervision, materials and equipment have been withdrawn.

Authorised person in charge  
(Signed)  (time) (date)
17.1 Introduction

17.1.1 Based on the findings of the risk assessment, appropriate control measures should be put into place to protect those who may be affected. This Chapter highlights suggested control measures for entry into enclosed or confined spaces.

17.1.2 The atmosphere of any enclosed or confined space is potentially dangerous. The space may be deficient in oxygen and/or contain flammable or toxic fumes, gases or vapours. Where possible, alternative means of working which avoid entering the space should be found.

17.1.3 Should there be any unexpected reduction in or loss of the means of ventilation of those spaces that are usually continuously or adequately ventilated then such spaces should also be dealt with as dangerous spaces.

17.1.4 When it is suspected that there could be a deficiency of oxygen in any space, or that toxic gases, vapours or fumes could be present, then such a space should be considered to be a dangerous space.

17.2 Precautions on Entering Dangerous Enclosed or Confined Spaces

17.2.1 The following precautions should be taken as appropriate before a potentially dangerous space is entered so as to make the space safe for entry without breathing apparatus and to ensure it remains safe whilst persons are within the space.

1. A competent person should make an assessment of the space and a responsible officer to take charge of the operation should be appointed...
2. The potential hazards should be identified - see 17.4
3. The space should be prepared and secured for entry - see 17.5
4. The atmosphere of the space should be tested - see 17.6
5. A "permit-to-work" system should be used - see 17.7
6. Procedures before and during the entry should be instituted - see 17.8
   and 17.9

17.2.2 Where the procedures listed at 1 to 4 in the previous paragraph have
been followed and it has been established that the atmosphere in the space
is or could be unsafe then the additional requirements including the use of
breathing apparatus specified in 17.11 should also be followed.

17.2.3 No one should enter any dangerous space to attempt a rescue without
taking suitable precautions for his own safety since not doing so would put
his own life at risk and almost certainly prevent the person he intended to
rescue being brought out alive.

17.3 Duties and Responsibilities of a Competent Person and
of a Responsible Officer

17.3.1 A competent person is a person capable of making an informed
assessment of the likelihood of a dangerous atmosphere being present or
arising subsequently in the space. This person should have sufficient
theoretical knowledge and practical experience of the hazards that might be
met in order to be able to assess whether precautions are necessary. This
assessment should include consideration of any potential hazards associated
with the particular space to be entered. It should also take into consideration
dangers from neighbouring or connected spaces as well as the work that has
to be done within the space.

17.3.2 A responsible officer is a person appointed to take charge of every
operation where entry into a dangerous space is necessary. This officer may
be the same as the competent person (see 17.3.1 above) or another officer
Both the competent person and/or the responsible officer may be a shore-side person.

17.3.3 It is for the responsible officer to decide on the basis of the risk assessment the procedures to be followed for entry into a potentially dangerous space. These will depend on whether the assessment shows:

(a) there is a minimal risk to the life or health of a person entering the space then or at any future time;

(b) there is no immediate risk to health and life but a risk could arise during the course of work in the space; or

(c) the risk to life or health is immediate.

17.3.4 Where the assessment shows that there is no immediate risk to health or life but that a risk could arise during the course of the work in the space the precautions described in sections 17.4 to 17.9 should be taken as appropriate.

17.3.5 Where the risk to health or life is immediate then the additional requirements specified in section 17.11 are necessary.

17.3.6 For inland water vessels such as harbour craft either or both the competent person and the responsible officer may only be available from shore-based personnel. No entry into a potentially dangerous space should be made in these circumstances until such suitably qualified persons are available.

17.4 Identifying Potential Hazards

Oxygen Deficiency

17.4.1 If an empty tank or other confined space has been closed for a time the oxygen content may have been reduced owing to a number of reasons:

(a) Rusting may have occurred due to oxygen combining with steel.

(b) Oxygen absorbing chemicals may have been present
(c) Oxygen absorbing cargoes may have been carried or gases from volatile cargoes may have displaced the oxygen in tanks.
(d) Hydrogen may have been produced in a cathodically-protected cargo tank used for ballast.
(e) Oxygen may have been displaced by the use of carbon dioxide or other fire-extinguishing or -preventing media, or inert gas in the tanks or inter-barrier spaces of tankers or gas carriers.

**Toxicity of Oil Cargoes**

**17.4.2** Hydrocarbon gases are flammable as well as toxic and may be present in fuel or cargo tanks which have contained crude oil or its products.

**17.4.3** Hydrocarbon gases or vapours may also be present in pump rooms and cofferdams, duct keels or other spaces adjacent to cargo tanks due to the leakage of cargo.

**17.4.4** The components in the vapour of some oil cargoes, such as benzene and hydrogen sulphide are very toxic.

**Toxicity of Other Substances**

**17.4.5** Cargoes carried in chemical tankers or gas carriers may be toxic.

**17.4.6** There is the possibility of leakage from drums of chemicals or other packages of dangerous goods where there has been mishandling or incorrect stowage or damage due to heavy weather.

**17.4.7** The trace components in inert gas such as carbon monoxide, sulphur dioxide, nitric oxide and nitrogen dioxide are very toxic.

**17.4.8** The interaction of vegetable or animal oils or sewage with sea water may lead to the release of hydrogen sulphide which is very toxic.
17.4.9 Hydrogen sulphide or other toxic gases may be generated where the residue of grain or similar cargoes permeates into or chokes bilge pumping systems.

17.4.10 The chemical cleaning, painting or the repair of tank coatings may involve the release of solvent vapours.

**Flammability**

17.4.11 Flammable vapours may still be present in cargo or other tanks that have contained oil products or chemical or gas cargoes.

17.4.12 Cofferdams and other spaces that are adjacent to cargo and other tanks may contain flammable vapours should there have been leakage into the space.

**Other Hazards**

17.4.13 Although the inhalation of contaminated air is the most likely route through which harmful substances enter the body, some chemicals can be absorbed through the skin.

17.4.14 Some of the cargoes carried in chemical tankers and gas carriers are irritant or corrosive if permitted to come into contact with the skin.

17.4.15 The disturbance of rust, scale or sludge residues of cargoes of animal, vegetable or mineral origin, or of water that could be covering such substances may lead to the release of toxic or flammable gases.

**17.5 Preparing and Securing the Space for Entry**

17.5.1 When opening the entrance to a potentially dangerous space, precautions should be taken in case pressurised or unpressurised vapour or gases are released from the space.
17.5.2 The space should be isolated and secured against the ingress of
dangerous substances by blanking off pipe-lines or other openings and by
closing valves. Valves should then be tied or some other means used to
indicate that they are not to be opened and notices placed on the relevant
controls. The officer on watch should be informed.

17.5.3 Where necessary, any sludge or other deposit liable to give off fumes
should be cleaned out. This may in itself lead to the release of gases, and
precautions should be taken (see 17.11).

17.5.4 The space should be thoroughly ventilated either by natural or
mechanical means and then tested (see 17.6) to ensure that all harmful
gases are removed and no pockets of oxygen deficient atmosphere remain.

17.5.5 Compressed oxygen should not be used to ventilate any space.

17.5.6 Where necessary pumping operations or cargo movements should be
suspended when entry is being made into a dangerous space.

17.6 Testing the Atmosphere of the Space

17.6.1 Testing of a space should be carried out only by persons trained in
the use of the equipment

17.6.2 Testing should be carried out before entry and at regular intervals
thereafter.

17.6.3 If possible, the testing of the atmosphere before entry should be made
by remote means. If this is not possible, the person selected to enter the
space to test the atmosphere should only do so in accordance with the
additional precautions specified in 17.11, which include the wearing of
breathing apparatus.
17.6.4 Where appropriate, the testing of the space should be carried out at different levels.

17.6.5 Some monitoring equipment is designed for personal use purely to provide a warning against oxygen deficiency and hydrocarbon concentrations when there is a change in conditions. This should not be used as a means of determining whether a dangerous space is safe to enter.

**Testing for Oxygen Deficiency**

17.6.6 A steady reading of at least 20% oxygen by volume on an oxygen content meter should be obtained before entry is permitted.

17.6.7 A combustible gas indicator cannot be used to detect oxygen deficiency.

**Testing for Flammable Gases and Vapours**

17.6.8 The combustible gas indicator (sometimes called an explosimeter) detects the amount of flammable gas or vapour in the air. An instrument capable of providing an accurate reading at low concentrations should be used to judge whether the atmosphere is safe for entry.

17.6.9 Combustible gas detectors are calibrated on a standard gas. When testing for other gases and vapours reference should be made to the calibration curves supplied with the instrument. Particular care is required should accumulations of hydrogen be suspected.

17.6.10 In deciding whether the atmosphere is safe to work in, a 'nil' reading on a suitably sensitive combustible gas indicator is desirable but, where the readings have been steady for some time, up to 1% of lower flammable limit may be accepted, e.g. for hydrocarbons in conjunction with an oxygen reading of at least 20% by volume.
Direct measurement of trace components of inert gas (see 17.4.7) is not required when the gas freeing of the atmosphere of a tank reduces the hydrocarbon concentration from about 2% by volume to 1% of lower flammable limit or less in conjunction with a steady oxygen reading of at least 20% by volume, because this is sufficient to dilute the components to a safe concentration. If, before the commencement of gas freeing, the hydrocarbon concentration of a tank containing inert gas is below 2% by volume due to excessive purging by inert gas, then additional gas freeing is necessary to remove toxic products introduced with the inert gas. It is difficult to measure the quantities of these toxic products at the safe level without specialised equipment and trained personnel. If this equipment is not available for use, the period of gas freeing should be considerably extended.

**Testing for Toxic Gases**

The presence of certain gases and vapours on chemical tankers and gas carriers is detected by fixed or portable gas or vapour detection equipment. The readings obtained by this equipment should be compared with the occupational exposure limits for the contaminant given in international industry safely guides or the latest edition of the Health and Safety Executive Guidance Note EH-40 Occupational Exposure Limits. These occupational exposure limits provide guidance for the level of exposure to toxic substances which should not be exceeded if the health of persons is to be protected. However it is necessary to know for which chemical a test is being made in order to use the equipment correctly and it is important to note that not all chemicals may be tested by these means.

When a toxic chemical is encountered for which there is no means of testing then the additional requirements specified in 17.11 should also be followed.

A combustible gas indicator will probably not be suitable for measuring levels of gas at or around its occupational exposure limit, where
there is solely a toxic, rather than a flammable, risk. This level will be much lower than the flammable limit, and the indicator will probably not be sufficiently sensitive to give accurate readings.

17.7 Use of Control systems

17.7.1 Entry into a dangerous space should be planned in advance and use should preferably be made of a 'permit-to-work' system. Details of the arrangements to be followed in a 'permit-to-work' system are described in section 16.2. A sample “permit to work” is at Annex 1 of Chapter 16.

17.7.2 For situations for which a well established safe system of work exists a check-list may exceptionally be accepted as an alternative to a full ‘permit-to-work’ provided that the principles of the ‘permit-to-work’ system are covered and the risks arising in the dangerous space are low.

17.8 Procedures and Arrangements Before Entry

17.8.1 Access to and within the space should be adequate and well illuminated.

17.8.2 No source of ignition should be taken or put into the space unless the master or responsible officer is satisfied that it is safe to do so.

17.8.3 In all cases rescue and available resuscitation equipment should be positioned ready for use at the entrance to the space. Rescue equipment means breathing apparatus together with fully charged spare cylinders of air life lines and rescue harnesses, and torches or lamp, approved for use in a flammable atmosphere, if appropriate. A means of hoisting an incapacitated person from the confined space may be required.

17.8.4 The number of personnel entering the space should be limited to those who actually need to work in the space. When necessary a rescue harness should be worn to facilitate recovery in the event of an accident.
17.8.5 At least one attendant should be detailed to remain at the entrance to the space whilst it is occupied.

17.8.6 An agreed and tested system of communication should be established between any person entering the space and the attendant at the entrance, and between the attendant at the entrance to the space and the officer on watch.

17.8.7 Before entry is permitted it should be established that entry with breathing apparatus is possible. Any difficulty of movement within any part of the space, or any problems if any incapacitated person had to be removed from the space, as a result of breathing apparatus or lifelines or rescue harnesses being used, should be considered and any risks minimised.

17.8.8 Lifelines should be long enough for the purpose and capable of being firmly attached to the harness, but the wearer should be able to detach them easily should they become tangled.

17.9 Procedures and Arrangements During Entry

17.9.1 Ventilation should continue during the period that the space is occupied and during temporary breaks. In the event of a failure of the ventilation system any personnel in the space should leave immediately.

17.9.2 The atmosphere should be tested periodically whilst the space is occupied and personnel should be instructed to leave the space should there be any deterioration of the conditions.

17.9.3 If unforeseen difficulties or hazards develop, the work in the space should be stopped and the space evacuated so that the situation can be re-assessed. Permits should be withdrawn and only re-issued, with any appropriate revisions, after the situation has been re-assessed.
17.9.4 If any personnel in a space feel in any way adversely affected they should give the pre-arranged signal to the attendant standing by the entrance and immediately leave the space.

17.9.5 Should an emergency occur the general (or crew) alarm should be sounded so that back-up is immediately available to the rescue team. Under no circumstances should the attendant enter the space before help has arrived and the situation has been evaluated to ensure the safety of those entering the space to undertake the rescue.

17.9.6 If air is being supplied through an air line to the person who is unwell, a check should be made immediately that the air supply is being maintained at the correct pressure.

17.9.7 Once the casualty is reached, the checking of the air supply must be the first priority. Unless he is gravely injured, e.g. a broken back, he should be removed from the dangerous space as quickly as possible.

17.10 Procedures on completion

17.10.1 On expiry of the 'permit-to-work', everyone should leave the space and the entrance to the space should be closed or otherwise secured against entry or alternatively, where the space is no longer a dangerous space, declared safe for normal entry.

17.11 Additional Requirements for Entry into a Space where the Atmosphere is Suspect or Known to be Unsafe

17.11.1 If the atmosphere is considered to be Suspect or unsafe to enter then the space should only be entered if it is essential for testing purposes, for the safety of life or of the ship, or for the working of the ship. Breathing apparatus should always be worn (see 17.14). The number of persons entering the space should be the minimum compatible with the work to be performed.
17.11.2 Except in the case of an emergency, or where impracticable because movement in the space would be seriously impeded, two air supplies as described in 17.13.2 should be available. While working the wearer should use the continuous supply provided from outside the space. If it becomes necessary to change over to the self-contained supply, the user should immediately exit from the space.

17.11.3 Precautions should be taken against any disruption to the air supply while the individual is inside the enclosed space. Special attention should be given to supplies originating from the engine room.

17.11.4 Where remote testing of the space (as recommended in 17.6.3) is not reasonably practicable, or where a brief inspection only is required, a single air supply may be acceptable provided that the wearer of breathing apparatus is so situated that he can be hauled out immediately in the case of an emergency.

17.11.5 In addition to rescue harnesses, wherever practicable lifelines should be used. Lifelines should be attended by a person stationed at the entrance who has been trained in how to pull an unconscious person from a dangerous space. If hoisting equipment would be required for any rescue, arrangements should be made to ensure that personnel would be available to operate it as soon as necessary.

17.11.6 When appropriate, portable lights and other electrical equipment should be of a type approved for use in a flammable atmosphere.

17.11.7 Should there be any hazard due to chemicals, whether in liquid, gaseous or vapour form, coming into contact with the skin and/or eyes then protective clothing should be worn.
17.12 Training, Instruction and Information

17.12.1 Employers should provide any necessary training, instruction and information to employees in order to ensure that the requirements of the Entry into Dangerous Spaces Regulations are complied with. This should include:

1. recognition of the circumstances and activities likely to lead to the presence of a dangerous atmosphere,
2. the hazards associated with entry into dangerous spaces, and the precautions to be taken,
3. the use and maintenance of equipment and clothing required for entry into dangerous spaces,
4. instruction and drills in rescue from dangerous spaces.

17.13 Breathing Apparatus and Resuscitation Equipment

17.13.1 No one should enter a space where the atmosphere is unsafe or suspect without wearing breathing apparatus which they are trained to use, even to rescue another person.

17.13.2 As described in 17.11.2, breathing apparatus for those working in a dangerous space will usually comprise a continuous supply from outside the space and a self-contained supply to enable the wearer to escape to a safe atmosphere in the event of difficulty with, or failure of, the continuous supply. It should not be necessary to remove any part of the equipment or any protective clothing to change over to the self-contained supply.

17.13.3 Equipment for use with two air supplies may consist of:

(a) a conventional self-contained breathing apparatus of the open circuit compressed air type that is approved to EN 137: 1993 and has been additionally tested for use with an air line connection; or
(b) a compressed air line breathing apparatus incorporating an emergency self-contained supply. The compressed air line breathing apparatus should be of the demand valve type and should be approved to EN 139: 1995, or for self-rescue purposes, to BS 1146: 1997 (or equivalent Standard).
The emergency self-contained supply should comply with the relevant parts of the appropriate Standard. The capacity of the self-contained supply should be sufficient for the wearer to escape to a safe atmosphere. When determining this capacity it should be recognised that, under stress or in difficult conditions, the wearer's breathing rate may be in excess of the nominal breathing rate of 40 litres per minute.

17.13.4 The responsible officer should make sure that the supply of air from outside the space is continuous and is available only to those working in the space. Pipeline or hoses supplying air should be placed so that they are not likely to be so distorted that supply might be interrupted or damaged. If the purpose for which such air lines are used is not immediately apparent to personnel not engaged in the entry, then notices should be posted at appropriate positions. Where a mechanical pump is being used it should frequently be checked carefully to ensure that it continues to operate properly. Any air pumped directly into a pipeline or put into reserve bottles must be filtered and should be as fresh as possible. Pipelines or hoses used to supply air should be thoroughly blown through to remove moisture and freshen the air before connection to breathing apparatus and face masks. It is essential that where the air supply is from a compressor sited in a machinery space, the engineer of the watch be informed so that the compressor is not shut-down until the work is completed.

17.13.5 Everyone likely to use breathing apparatus must be instructed by a competent person in its proper use.

17.13.6 The master or responsible officer and the person about to enter the space should undertake the full pre-wearing check and donning procedures recommended in the manufacturer's instructions. In particular they should check:-

1. that there will be sufficient clean air at the correct pressure;
2. that low pressure alarms are working properly;
3. that the facemask fits correctly against the user's face so that, combined...
with pressure of the air coming into the mask, there will not be. an ingress of oxygen deficient air or toxic vapours when the user inhales. It should be noted that facial hair or spectacles may prevent the formation of an air-tight seal between a person's face and the facemask;

4. that the wearer of the breathing apparatus understands whether or not their air supply may be shared with another person and if so is also aware that such procedures should only be used in an extreme emergency;

5. that when work is being undertaken in the space the wearer should keep the self-contained supply for use when there is a failure of the continuous supply from outside the space.

17.13.7 When in a dangerous space:-

1. No one should remove their own breathing apparatus.
2. Breathing apparatus should not be removed from a person unless it is necessary to save their life.

17.13.8 It is recommended that resuscitators of an appropriate kind should be provided where any person may be required to enter a dangerous space. Where entry is expected to occur at sea the ship should be provided with appropriate equipment. Otherwise entry should be deferred until the ship has docked and use can be made of shore side equipment.

**Maintenance of Equipment for entry into dangerous spaces**

17.13.9 All breathing apparatus, rescue harnesses, lifelines, resuscitation equipment and any other equipment provided for use in, or in connection with, entry into dangerous spaces, or for use in emergencies, should be properly maintained, inspected periodically and checked for correct operation by a competent person and a record of the inspections and checks should be kept. All items of breathing apparatus should be inspected for correct operation before and after use.

17.13.10 Equipment for testing the atmosphere of dangerous spaces, including oxygen meters, should be kept in good working order and, where
applicable, regularly serviced and calibrated. Due regard should be paid to
manufacturers' recommendations which should always be kept with the
equipment.
18.1 Introduction

18.1.1 Based on the findings of the risk assessment, appropriate control measures should be put into place to protect those who may be affected. This chapter highlights some areas which may require attention in respect of boarding arrangements.

18.2 Positioning of Boarding Equipment

18.2.1 The angles of inclination of a gangway or accommodation ladder should be kept within the limits for which it was designed. Gangways should not be used at an angle of inclination greater than 30° from the horizontal and accommodation ladders should not be used at an angle greater than 55° from the horizontal, unless specifically designed for greater angles.

18.2.2 When the inboard end of the gangway or accommodation ladder rests on or is flush with the top of the bulwark, a bulwark ladder should be provided. Any gap between the bulwark ladder and the gangway or accommodation ladder should be adequately fenced to a height of at least 1 metre.

18.2.3 Gangways and other access equipment should not be rigged on ships' rails unless the rail has been reinforced for that purpose. They should comply with the guidance in Annex 18.1.

18.2.4 The means of access should be checked to ensure that it is safe to use after rigging. There should be further checks to ensure that adjustments are made when necessary due to tidal movements or change of trim and freeboard. Guard ropes, chains etc. should be kept taut at all times and stanchions should be rigidly secured.

18.2.5 Each end of a gangway or accommodation or other ladder should provide safe access to a safe place or to an auxiliary safe access.
18.2.6 The means of access should be sited clear of the cargo working area and so placed that no suspended load passes over it. Where this is not practicable, access should be supervised at all times.

18.2.7 A life-buoy should be available and ready for use at the point of access aboard the ship.

18.3 Lighting and Safety of Movement

18.3.1 In normal circumstances, the boarding equipment and the immediate approaches to it should be effectively illuminated from the ship or the shore to at least a level of 20 lux, as measured at a height of 1 metre above the surface of the means of access or its immediate approaches. Where the dangers of tripping or falling are greater than usual because of bad weather conditions or where the means of access is obscured, e.g. by the presence of coal dust, consideration should be given to a higher minimum level of say 30 lux.

18.3.2 The means of boarding and its immediate approaches should be kept free from obstruction and, as far as is reasonably practicable, kept clear of any substance likely to cause a person to slip or fall. Where this is not possible, appropriate warning notices should be posted and if necessary the surfaces suitably treated.

18.4 Portable and Rope Ladders

18.4.1 Where, exceptionally, a portable ladder is used for the purpose of access to the ship, it is very important that the ladder is checked regularly by a competent person, and that account is taken of vessel movement and tide changes.

18.4.2 When it is necessary to use a portable ladder for access it should be used at an angle of between 60° and 75° from the horizontal. The ladder should extend at least 1 metre above the upper landing place unless there
are other suitable handholds. It should be properly secured against slipping or shifting sideways or falling and be so placed as to afford a clearance of at least 150 mm behind the rungs.

**18.4.3** When a portable ladder is resting against a bulwark or rails, suitable safe access to the deck as recommended in paragraph 18.2.2 should be provided.

**18.4.4** A rope ladder should never be secured to rails or to any other means of support unless the rails or support are so constructed and fixed as to take the weight of a man and a ladder with an ample margin of safety.

**18.4.5** A rope ladder should be left in such a way that it either hangs fully extended from a securing point or is pulled up completely. It should not be left so that any slack will suddenly pay out when the ladder is used.

**18.4.6** Where the freeboard is 9 metres or more, a rope ladder should be used in conjunction with an accommodation ladder leading aft and positioned in such a way as to provide safe and easy access from the rope ladder to the bottom platform. Further guidance is contained in Annex 18.1.

### 18.5 Safety nets

**18.5.1** A safety net should be mounted whenever possible where a person may fall from boarding equipment or from the ship’s deck or quayside. The aim of safety nets is to minimise the risk of injury arising from falling between the ship and the quay or falling onto the quay or deck and as far as is reasonably practicable the whole length of the means of access should be covered. Safety nets should be securely rigged, with use being made of attachment points on the quayside where appropriate.

### 18.6 Maintenance of equipment for means of access

**18.6.1** Any equipment used for boarding must be properly maintained, and should be inspected by a competent person at appropriate intervals. Any defects affecting the safety of any access equipment, including access provided...
by a shore authority, should be reported immediately to a responsible person and
should be made good before further use.

18.6.2 Aluminum equipment should be examined for corrosion in
accordance with the instructions in Annex 18.2.

18.7 Special Circumstances

18.7.1 In some circumstances it may not be practical to mount proper safe
boarding arrangements by conventional means, for example, where there is
frequent movement of the ship during cargo operations. On such occasions
boarding should be carefully supervised and consideration given to providing
alternative means of access.

18.7.2 Small boats or tenders used between the shore and the ship should be
safe and stable, be suitably powered, correctly operated and properly equipped
with the necessary safety equipment and, if not a ship’s boat, be approved for
that purpose.

18.7.3 Where a vessel is moored alongside another vessel, there should be co-
operation between the two vessels in order to provide suitable and safe boarding
arrangements. Access should generally be provided by the ship lying outboard,
except that, where there is a great disparity in freeboard, access should be
provided by the ship with the higher freeboard.

18.7.4 Care should be taken at all times, but particularly at night, when
boarding or leaving a ship, or when moving through the dock area. The edges of
the docks, quays etc. should be avoided and any sign prohibiting entry to an
area should be strictly observed. Where there are designated routes they should
be followed exactly. This is particularly important in the vicinity of container
terminals or other areas where rail traffic, straddle carriers or other mechanical
handling equipment is operating, as the operators of such equipment have
restricted visibility, placing anyone walking within the working area at risk.
18.8 Pilot ladders and hoists

18.8.1 Where a pilot hoist is provided, personnel engaged in rigging and operating it should be fully instructed in the safe procedures to be adopted and the equipment should be tested prior to use.

18.8.2 The pilot ladder and any accommodation ladder used in conjunction with it should conform to the standards contained in Annex 18.1

18.8.3 In addition to the general points in sections 18.2 to 18.4 above, in order to minimise the danger to pilots when boarding and leaving ships, particular attention should be given to the following points:

(a) Pilot ladders should be rigged in such a manner that the steps are horizontal, and such that the lower end is at a height above the water to allow ease of access to and from the attendant craft;
(b) The ladder should rest firmly against the side of the ship;
(c) When an accommodation ladder is used in conjunction with a pilot ladder the pilot ladder should extend at least two metres above the bottom platform;
(d) The rigging of pilot ladders and the embarkation and disembarkation of pilots must be supervised by a responsible officer of the ship, who should be in contact with the bridge.
(e) A life-buoy with self-igniting light should be kept available at the point of access to the ship.
(f) At night, the pilot ladder and ship's deck should be lit by a forward-shining, overside light

18.8.4 It is very important that the ship offers a proper lee to the pilot boat. The arrangements for boarding should preferably be sited as near amidships as possible, but in no circumstances should they be in a position which could lead to the pilot boat running the risk of passing underneath overhanging parts of the ship's hull structure. Further information is contained in the relevant Merchant Shipping Notice.
ANNEX 18.1

CONSTRUCTION OF MEANS OF ACCESS

General

1. Gangways must be carried on ships of 30 metres in length or over and accommodation ladders must be carried on ships of 120 metres in length or over, complying with the specifications below. Access equipment must be of good construction, sound material and adequate strength, free from patent defect and properly maintained. Rope ladders must comply with the requirements in Section 18.4 and paragraph 7 below.

2. Gangways and accommodation ladders must be clearly marked with the manufacturer's name, the model number, the maximum designed angle of use and the maximum safe loading both by numbers of persons and by total weight.

3. Gangways must comply with the specifications set out in standard BS MA 78: 1978 or equivalent, and must be fitted with suitable fencing along their entire length.

Accommodation ladders

4. Accommodation ladders must comply with the specifications set out in Standard BS MA 89: 1980 or be of an equivalent standard.

5. The ladder should be designed so that:
   • it rests firmly against the side of the ship;
   • the angle of slope is no more than 55°. Treads and steps should provide a safe foothold at the angle at which the ladder is used;
   • it is fitted with suitable fencing (preferably rigid handrails) along its entire length, except that fencing at the bottom platform may allow access from the outboard side;
   • the bottom platform is horizontal, and any intermediate platforms are self-levelling.

6. When a bulwark ladder is to be used it must comply with the specifications set out in the Shipbuilding Industry Standard No SIS 7, or BS
MA 39: Part 2, Ships’ ladders (steel sloping) or be of an equivalent standard. Adequate fittings must be provided to enable the bulwark ladder to be properly and safely secured.

**Rope Ladders**

7. A rope ladder must be of adequate width and length and so constructed that it can be efficiently secured to the ship.
   - The steps must provide a slip-resistant foothold of not less than 400 mm x 115 mm x 25mm and must be so secured that they are firmly held against twist, turnover or tilt.
   - The steps must be horizontal and equally spaced at intervals of 310 mm (± 5mm).
   - The side ropes, which should be a minimum of 18mm in diameter should be equally spaced.
   - There should be no shackles, knots or splices between rungs.
   - Ladders of more than 1.5 metres in length must be fitted with spreaders not less than 1.8 metres long. The lowest spreader must be on the fifth step from the bottom and the interval between spreaders must not exceed nine steps. The spreaders should not be lashed between steps.

**Access for Pilots**

8. In addition to the standards above, every pilot ladder should be positioned and secured so that
   - it is clear of any possible discharges from the ship;
   - it is, where practicable, within the mid-ship half-section of the ship (but see 18.8.4);
   - it is firmly secured to the ship’s side; and
   - the person climbing ft can safely and conveniently board the ship after climbing no more than 9 metres.

9. Where replacement steps are fitted, they should be secured in position by the method used in the original construction of the ladder No pilot ladder should have more than two replacement steps secured in position by a different method. Where a replacement step is secured by means of grooves
in the sides of the step, such grooves should be in the longer sides of the step.

10. Two man-ropes of not less than 28 mm in diameter, properly secured to the ship should be provided.

11. Safe, convenient and unobstructed access should be provided to anyone embarking or disembarking between the ship and the head of the pilot ladder.

12. Where access to the ship is by a gateway in the rails or bulkhead, adequate handholds should be provided. Shipside doors used for this purpose should not open outwards.

13. Where access is by bulwark ladder the ladder should be securely attached to the bulwark rail or landing platform. Two handhold stanchions should be provided, between 700mm and 800mm apart, each of which should be rigidly secured to the ship’s structure at or near its base and at another higher point. The stanchions should be at least 40mm in diameter and extend no less than 1.20 metres above the top of the bulwarks.

14. Where the freeboard of the ship is more than 9 metres, accommodation ladders must be provided on each side of the ship.

15. Such accommodation ladders should comply with the standards in paragraph 5 above, and in addition:

- the pilot ladder should extend at least 2 metres above the accommodation ladder’s bottom platform;
- if a trap door is fitted in the bottom platform to allow access to the pilot ladder the opening should be no less than 750mm square, and the after part of the bottom platform should be fenced as the rest of the ladder.

   In this case, the pilot ladder should extend above the lower platform to the height of the handrail.

**Pilot hoists**

16. Detailed construction standards for pilot hoists are contained in the MS (Pilot Ladders and Hoists) Regulations 1998. These have not been reproduced here as hoists must be of an approved design and are subject to annual survey as part of the annual and renewal survey for the vessel’s safety equipment certificate.
ANNEX 18.2
CORROSION OF ACCOMMODATION LADDERS AND GANGWAYS

1. Aluminum alloys are highly susceptible to galvanic corrosion in a marine atmosphere if they are used in association with dissimilar metals. Great care should be exercised when connecting mild steel fittings, whether or not they are galvanised, to accommodation ladders and gangways constructed of aluminum.

2. Plugs and joints of neoprene, or other suitable material, should be used between mild steel fittings, washers, etc. and aluminum. The plugs or joints should be significantly larger than the fittings or washers.

3. Repairs using mild steel doublers or bolts made of mild steel or brass or other unsuitable material should be considered as temporary. Permanent repairs, or the replacement of the means of access, should be undertaken at the earliest opportunity.

4. The manufacturer's instructions should give guidance on examination and testing of the equipment. However close examination of certain parts of accommodation ladders and gangways is difficult due to their fittings and attachments. It is essential, therefore, that the fittings are removed periodically for a thorough examination of the parts most likely to be affected by corrosion. Accommodation ladders and gangways should be turned over to allow for a thorough examination of the underside. Particular attention should be paid to the immediate perimeter of the fittings; this area should be tested for corrosion with a wire probe or scribe. Where the corrosion appears to have reduced the thickness of the parent metal to 3 mm, back plates should be fitted inside the stringers of the accommodation ladder or gangways.
CHAPTER 19
MANUAL HANDLING

19.1 Introduction

19.1.1 Based on the findings of the risk assessment, appropriate control measures should be put into place to protect those who may be affected. This chapter highlights some areas which may require attention in respect of manual handling.

19.1.2 The assessment should take full account not only of the characteristics of the load and the physical effort required but also of the working environment (e.g. ship movement, confined space, high or low temperature, physical obstacles such as steps or gangways) and any other relevant factors (e.g. the age and health of the person, the frequency and duration of the work). A fuller list of factors to be considered is given in Annex 19.1.

19.2 General

19.2.1 The term "manual handling" is used to describe any operation which includes any transporting or supporting of a load, lifting, putting down, pushing, pulling, carrying or moving by hand or by bodily force. This guidance is generally concerned with preventing musculo-skeletal injury.

19.2.2 There may of course be other hazards to those handling loads, for example from leakage of a hazardous substance from a package being moved, but these are dealt with under the relevant chapters of section 3.

19.2.3 Musculo-skeletal injuries can occur as a result of accident, poor organisation or an unsatisfactory working method.

19.3 Role of Employers

19.3.1 Before instructing personnel to lift or carry by hand, employers
should consider whether alternative means of doing the same job would reduce
the risk of injury. They should take appropriate measures or provide the means
to avoid the need for any manual handling operations which may cause injury
to personnel, for example by re-organisation of the work, or automating or
mechanising the operation.

19.3.2 Where there is no practical alternative to manual handling, the
employer should take appropriate steps to reduce the risk of injury, e.g.;
- re-organisation of work stations (to enable workers to maintain good
  posture while lifting or carrying); and
- taking account of an individual's capabilities when allocating tasks. There
  are often severe limitations in a ship on the improvements that can be made,
  but the employer should ensure that, as far as is reasonably practicable, risks
  have been minimised.

19.3.3 Employers should also provide personnel with the best available
information on:
- the weight of loads that they are required to move;
- any off-centre weighting of any load.

19.3.4 Personnel should be instructed how to handle loads correctly, and what
the risks are to their health and safety if they do not follow such guidance. This
may involve experienced and properly trained personnel demonstrating best
practice especially to new recruits.

19.4 Advice to seafarers

19.4.1 Personnel should:
- use any mechanical aids provided;
- follow instructions; and
- take sensible precautions to ensure that they are aware of any risk of
  injury from the load before picking it up.
In manual lifting and carrying, the proper procedure to be followed is:

- assess the load to be lifted, taking account of any information provided by the employer;
- look for sharp edges, protruding nails or splinters, for surfaces which are greasy or otherwise difficult to grip and for any other features which may prove awkward or dangerous - for example sacks of ships stores may be difficult to get off the deck;
- ensure that the deck or area over which the load is to be moved is free from obstructions and not slippery

Graphic illustrations of manual handling techniques are contained in Annex 19.2. The diagram (Fig 1) illustrates some important points in lifting techniques.

(a) A firm and balanced stance should be taken close to the load with the feet a little apart, not too wide, so that the lift will be as straight as possible.

(b) A crouching position should be adopted, knees bent and maintaining the natural curve of the back to ensure that the legs do the work. It helps to tuck in the chin while gripping the load and then raise the chin as the lift begins.

(c) The load should be gripped with the whole of the hand - not fingers only. If there is insufficient room under a heavy load to do this a piece of wood should be put underneath first.

(d) The size and shape of the load are not good guides to its weight or weight distribution. If this information is not available a careful trial lift should be made, and if there is any doubt whether the load can be managed by one person help should be provided.

(e) The load should be lifted by straightening the legs, keeping it close to the body. The heaviest side should be kept closest to the trunk. The body should not be twisted as this will impose undue strain on the back and other parts of the body.

(f) If the lift is to a high level, it may be necessary to do it in two stages; first
raising the load onto a bench or other support and then completing the lift to the full height, using a fresh grip (Fig 2).

19.4.4 When two or more people are handling a load, it is preferable that they should be of similar stature. The actions of lifting, lowering and carrying should, as far as possible, be carried out in unison to prevent strain and any tendency for either person to overbalance (Fig 3).

19.4.5 The procedure for putting a load down is the reverse of that for lifting, the legs should do the work of lowering - knees bent, back Straight and the load close to the body. Care should be taken not to trap fingers. The load should not be put down in a position where it is unstable. If precise positioning is necessary, the load should be put down first, then slid into the desired position.

19.4.6 A load should always be carried in such a way that it does not obscure vision, so allowing any obstruction to be seen.

19.4.7 The risk of injury may be reduced if lifting can be replaced by controlled pushing or pulling. For example, it may be possible to slide the load or roll it along. However uncontrolled sliding or rolling, particularly of large or heavy loads, may introduce fresh risks of injury.

19.4.8 For pulling and pushing, a secure footing should be ensured, and the hands applied to the load at a height between waist and shoulder wherever possible (Fig 4). A further option, where other safety considerations allow, is to push with the worker's back against the load, using the strong leg muscles to exert the force (Fig 5).

19.4.9 Suitable shoes or boots should be worn for the job. Protective toecaps help to guard toes from crushing if the load slips; they can sometimes also be useful when putting the load down to take the weight while hands are removed from underneath.
19.4.10 Clothing should be worn which does not catch in the load and which gives some body protection.

19.4.11 Where the work is very strenuous, for example due to load weight, repetitive effort over a period or environmental factors such as a confined space or an extreme of temperature, rest should be taken at suitable intervals, to allow muscles, heart and lungs to recover; fatigue makes accidents more likely on work of this type.

19.4.12 Whenever possible, manual lifting and carrying should be organised in such a way that each person has some control over their own rate of work.
ANNEX 19.1
FACTORS TO BE CONSIDERED

The following are examples of the factors to which the employer Should have regard and questions he should consider when making an assessment of manual handling operations or providing instruction for personnel.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The tasks</td>
<td>Do they involve:</td>
</tr>
<tr>
<td></td>
<td>- holding or manipulating loads at distance from trunk?</td>
</tr>
<tr>
<td></td>
<td>- unsatisfactory or unstable bodily movement or posture, especially:</td>
</tr>
<tr>
<td></td>
<td>- twisting the trunk?</td>
</tr>
<tr>
<td></td>
<td>- stooping?</td>
</tr>
<tr>
<td></td>
<td>- reaching upward?</td>
</tr>
<tr>
<td></td>
<td>- excessive movement of loads, especially:</td>
</tr>
<tr>
<td></td>
<td>- excessive lifting or lowering distances?</td>
</tr>
<tr>
<td></td>
<td>- excessive carrying distances?</td>
</tr>
<tr>
<td></td>
<td>- risk of sudden movement of loads?</td>
</tr>
<tr>
<td></td>
<td>- frequent or prolonged physical effort, particularly affecting the spine?</td>
</tr>
<tr>
<td></td>
<td>- insufficient rest or recovery periods?</td>
</tr>
<tr>
<td></td>
<td>- climbing up or down stairs?</td>
</tr>
<tr>
<td></td>
<td>- a rate of work imposed by a process?</td>
</tr>
<tr>
<td></td>
<td>- use of special equipment?</td>
</tr>
</tbody>
</table>

| 2 The loads | Are they: |
| | - heavy? |
| | - bulky or unwieldy? |
| | - difficult to grasp? |
| | - unstable, or with contents likely to shift, break open or break apart? |
| | - likely to injure workers, particularly in the event of a collision? |
3 The working

Has account been taken of the sea-state, wind speed and the unpredictable movement of the deck?

Are there:
- space constraints preventing handling loads at a safe height or with good posture?
- uneven, slippery or unstable deck surface? - variations in level of deck surfaces (e.g. door sills) or work surfaces?
- extremes of temperature or humidity?
- are there steps, stairs or ladders or self-closing doors to be negotiated?
- is the area adequately lit?
- is movement or posture hindered by personal protective equipment or by clothing?

4 Individual capability

Does the job:
- require unusual strength, height, etc.?
- create a hazard to those who might reasonably be considered physically unsuited to the task?
- require special information or instruction or special equipment for its safe performance?
Annex 19.2
Graphic illustrations of manual handling techniques

fig 1

fig 2
Graphic illustrations of manual handling techniques (continued)

fig 3

fig 4

fig 5
CHAPTER 20
USE OF WORK EQUIPMENT

20.1 Introduction

20.1.1 Based on the findings of the risk assessment appropriate control measures should be put into place to protect those who may be affected. This chapter highlights some areas which may require attention in respect of use of work equipment.

20.2 Use of tools and equipment

20.2.1 This section gives general advice which is applicable to all kinds of equipment including both powered and hand tools. Some types of equipment which pose particular risks are covered by later sections. Lifting equipment, because of the serious hazards it presents, is dealt with in more detail in Chapter 21.

20.2.2 Tools should be used only for the purpose for which they were designed. Personnel should ensure that they use the correct tools or equipment for a task. Use of unsuitable tools or equipment may lead to accidents.

20.2.3 Loose clothing or jewellery should never be worn while using machinery, as there is a risk that it may become caught in moving parts. For the same reason, long hair should always be tied back and covered with a hair net or safety cap. Personal protective equipment should be worn as required by Merchant Shipping Notice M1195.

20.2.4 Only those competent to use equipment should do so. New recruits should always be shown how to use any equipment which may injure them or another person if it is carelessly or incorrectly handled or used.

20.2.5 Incorrect use of tools and equipment can cause accidents, as well as
damage to the equipment in question. Instructions for use should always be consulted and followed, where they are available.

20.2.6 When not in use equipment should be stowed in a tidy and correct manner. Any cutting edges should be protected.

20.3 Hand tools

20.3.1 Damaged or worn tools should not be used, and cutting edges should be kept sharp and clean. Repair and dressing of tools should be carried out by a competent person.

20.3.2 Wherever practicable, a tool in use should be directed away from the body, so that if it slips it does not cause injury. However when using a spanner more control is gained by pulling towards the body. When using a tool with a cutting edge, both hands should be kept behind the blade.

20.3.3 A chisel is best held between thumb and base of index finger with thumb and fingers straight, palm of hand facing towards the hammer blow.

20.3.4 A saw should not be forced; it should be pushed with a light, even movement.

20.4 Portable power operated tools and equipment

20.4.1 Power operated equipment may be dangerous unless properly maintained, handled and used and should only be used by competent persons. The flexible cables of electric tools should comply with the relevant Standard. Before work begins, personnel should ensure that power supply leads and hoses are in good condition, laid safely, clear of all potentially damaging obstructions and do not obstruct safe passage. Where they pass through doorways, the doors should be secured open.

20.4.2 The risk of electric shock is increased either by perspiration or in locations which are damp, humid or have large conductive surfaces. In such
conditions power tools should be operated from low voltage supplies (no more than 50 volt AC with a maximum of 30 volt to earth or 50 volts DC).

20.4.3 Where it is not practicable to use low voltages, other precautions such as a local isolating transformer supplying one appliance only or a high sensitivity earth leakage circuit breaker (also known as a residual current device) should be used.

20.4.4 The risk associated with portable electric tools also applies to portable electric lamps. The supply to these should not exceed 24 volt.

20.4.5 Double insulated tools are not recommended for use on ships because water can provide a contact between live parts and the casing, increasing the risk of a fatal shock.

20.4.6 Chain linkages or similar devices should be fitted between sections of pneumatic hose to prevent whip-lash in the event of breakage. Alternatively safety valves can be used which close off the lines.

20.4.7 Accessories and tool pieces (drill bit, chisel etc.) should be absolutely secure in the tool. In particular; retaining springs, clamps, locking levers and other built-in safety devices on pneumatic tools should be replaced after the tool piece is changed. Accessories and tool pieces should not be changed while the tool is connected to a source of power.

20.4.8 Connect safety guards for appliances should be securely fixed before starting any operation. They should only be removed when the machinery is not operating. However if removal is essential for maintenance or examination of the equipment, the following precautions should be taken:

• removal should be authorised by a responsible person, and only a competent person should carry out the work or examination;
• there should be adequate clear space and lighting for the work to be done;
• anyone working close to the machinery should be told what the risks are and instructed in a safe system of work and precautions to take;

• a warning notice should be conspicuously posted.

**20.4.9** During temporary interruptions to work e.g. meal breaks and also at completion of a task, equipment should be isolated from power sources and left safely or stowed away correctly.

**20.4.10** Where the work operation causes high noise levels, hearing protection should be worn. Where flying particles may be produced, the face and eyes should be protected (see Chapter 4 Personal Protective Equipment).

**20.4.11** The vibration caused by reciprocating tools (pneumatic drills, hammers, chisels etc.) or high speed rotating tools can give rise to a permanent disablement of the hands known as "dead" or "white" fingers. In its initial stages, this appears as a numbness of the fingers and an increasing sensitivity to cold, but in more advanced stages, the hands become blue and the fingertips swollen. Those prone to the disability should not use such equipment. Others should be advised not to use them for more than 30 minutes without a break.

**20.5 Workshop and Bench Machines (Fixed installations)**

**20.5.1** Fixed installations should only be operated by competent personnel. The operator should check a machine every time before use, and ensure that all safety guards and devices are in position and operative, that all tool pieces (drill bits, cutting blades, etc) are in good condition, and that the work area is adequately lit and free from clutter.

**20.5.2** No machine should be used when a guard or safety device is missing, incorrectly adjusted or defective or when it is itself in any way faulty (see also advice in 20.4.8 above). If any defect is identified, the machine should be isolated from its source of power until it has been repaired.
20.5.3 During operations, personnel should ensure that work pieces are correctly secured in position, machine residues (swarf, sandings etc.) do not build up excessively, and are disposed of in a correct and safe manner.

20.5.4 Whenever machinery is left unattended, even if only briefly, the power supply should be switched off and isolated, and the machinery and any safety guards should be rechecked before resuming work.

20.6 Abrasive wheels

20.6.1 Abrasive wheels should be selected, mounted and used only by competent persons and in accordance with manufacturers’ instructions. They are relatively fragile and should be stored and handled with care.

20.6.2 Manufacturers’ instructions should be followed on the selection of the correct type of wheel for the job in hand. Generally soft wheels are more suitable for hard material and hard wheels for soft material.

20.6.3 Before a wheel is mounted, it should be brushed clean and closely inspected to ensure that it has not been damaged in storage or transit. The soundness of a vitrified wheel can be further checked by suspending it vertically and tapping it gently. If the wheel sounds dead it is probably cracked, and should not be used.

20.6.4 A wheel should not be mounted on a machine for which it is unsuitable. It should fit freely but not loosely to the spindle; if the fit is unduly tight the wheel may crack as the heat of the operation causes the spindle to expand.

20.6.5 The clamping nut should be tightened only sufficiently to hold the wheel firmly. When the flanges are clamped by a series of screws, the screws should be first screwed home with the fingers and diametrically opposite pairs tightened in sequence.
20.6.6 The speed of the spindle should not exceed the stated maximum permissible speed of the wheel.

20.6.7 A strong guard, enclosing as much of the wheel as possible, should be provided and kept in position at every abrasive wheel (unless the nature of the work absolutely precludes its use) both to contain wheel parts in the event of a burst and to prevent an operator having contact with the wheel. (See also 20.4.8 above)

20.6.8 Where a workrest is provided, it should be properly secured to the machine and should be adjusted as close as practicable to the wheel, the gap normally being not more than 1.5 mm (1/16 inch).

20.6.9 The side of a wheel should not be used for grinding: it is particularly dangerous when the wheel is appreciably worn.

20.6.10 The workpiece should never be held in a doth or pliers.

20.6.11 When dry grinding operations are being carried on or when an abrasive wheel is being trued or dressed, suitable transparent screens should be fitted in front of the exposed part of the wheel or operators should wear properly fitting eye protectors.

20.7 Hydraulic/Pneumatic/High Pressure Jetting Equipment

20.7.1 Personnel using hydraulic/pneumatic/high pressure systems should have received adequate instruction and be competent to use such equipment. Manufacturers’ operating guidelines should be followed at all times. Equipment should not be operated at pressures which exceed manufacturers’ recommendations.

20.7.2 Before starting work, personnel should ensure that the equipment and supply systems are in sound condition, and that incorporated safety
devices are in place and functioning correctly. Where equipment is defective or suspect, systems should be shut down, isolated and depressurised to allow effective changeout or repair. Such repairs should be carried out by authorised competent personnel using approved components only.

20.7.3 Before activating a pressure system, and also when closing down, the recommended checks should be made to ensure that no air pockets or trapped pressure are in the system, as these may cause erratic action of the equipment.

20.7.4 When handling hydraulic fluid, personnel should ensure the following:
   (a) that the correct grade is used, when topping up systems;
   (b) that spillages are cleaned up immediately;
   (c) that any splashes of such fluid onto skin areas are cleaned off immediately - many such fluids are mineral based;
   (d) that naked lights are kept away from equipment during service/test periods - hydraulic fluids may give off vapours which may be flammable.

20.7.5 Operators using high pressure jetting equipment should wear the correct protective equipment. Such systems may involve use of a heated supply source and operators should therefore guard against splashing and scalding. Warning notices should be displayed on approaches to areas where such work is being undertaken to warn other personnel of the use of such high pressure system in the area. Finally, operators should take great care in ensuring that the direction of such jetting is safe.

20.7.6 When compressed air is used, the pressure should be kept no higher than is necessary to undertake the work satisfactorily.

20.7.7 Compressed air should not be used to dean the working space, and in no circumstances should it be directed at any part of a person's body.
20.8 Hydraulic jacks

20.8.1 Jacks should be inspected before use to ensure that they are in a sound condition and that the oil in the reservoir reaches the minimum recommended level.

20.8.2 Before a jack is operated, care should be taken to ensure that it has an adequate lifting capability for the work for which it is to be used and that its foundation is level and of adequate strength.

20.8.3 Jacks should be applied only to the recommended or safe jacking points on equipment

20.8.4 Equipment under which personnel are required to work should be properly supported with chocks, wedges or by other safe means - never by jacks alone.

20.8.5 Jack operating handles should be removed if possible when not required to be in position for raising or lowering the jack

20.9 Ropes

20.9.1 The safety of the ship or an individual crew member is often dependent on the rope that is being used.

20.9.2 Many types of rope of both man-made and natural fibre are available, each with different properties and with different resistance to contamination by substances in use about the ship which may seriously weaken the rope. The following table is a guide to the resistance of the main rope types but is indicative only of the possible extent of deterioration of rope; in practice, much depends on the precise formulation of the material, the amount of contamination the rope receives and the length of time and the temperature at which it is exposed to contamination. In some cases, damage may not be apparent even on close visual inspection.
### Resistance to chemicals of rope made of

<table>
<thead>
<tr>
<th>Substance</th>
<th>Manila or Sisal</th>
<th>Polyamide (nylon)</th>
<th>Polyester</th>
<th>Poly-propylene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric (battery) acid</td>
<td>None</td>
<td>Poor</td>
<td>Good</td>
<td>VGood</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>None</td>
<td>Poor</td>
<td>Good</td>
<td>VGood</td>
</tr>
<tr>
<td>Typical rust remover</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
<td>VGood</td>
</tr>
<tr>
<td>Caustic Soda</td>
<td>None</td>
<td>Good</td>
<td>Fair</td>
<td>VGood</td>
</tr>
<tr>
<td>Liquid Bleach</td>
<td>None</td>
<td>Good</td>
<td>VGood</td>
<td>VGood</td>
</tr>
<tr>
<td>Creosote, crude oil</td>
<td>Fair</td>
<td>None</td>
<td>Good</td>
<td>VGood</td>
</tr>
<tr>
<td>Phenols, Crude tar</td>
<td>Good</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Diesel Oil</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Synthetic detergents</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Chlorinated solvents, e.g. trichloroethylene (used in some paint and varnish removers)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
<td>Poor</td>
</tr>
<tr>
<td>Other organic solvents</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

**20.9.3** Ropes should be stored away from heat and sunlight, if possible in a separate compartment which is dry and well ventilated, away from containers of chemicals, detergents, rust removers, paint strippers and other substances capable of damaging them. Mooring ropes should be covered by tarpaulins or if the ships is on a long voyage, stowed away Any accidental contamination should be reported immediately for cleansing or other action.

**20.9.4** Man-made fibre ropes have high durability and low water absorption and are resistant to rot. Mildew does not attack man-made fibre ropes but moulds can form on them. This will not normally affect their strength.

**20.9.5** Polypropylene ropes which have the best all round resistance to attack from harmful substances are generally preferred. However they may be subject to degradation in strong sunlight ("actinic degradation"), and should not be exposed for long periods. They should also be of a type providing grip comparable to that of manila or sisal ropes.

**20.9.6** New rope, 3-strand fibre rope and wine should be taken out of a coil in such a fashion as to avoid disturbing the lay of the rope.

**20.9.7** Rope should be inspected internally and externally before use for signs of deterioration, undue wear or damage.
20.10 Characteristics of man-made fibre ropes

20.10.1 Safe handling of man-made fibre ropes requires techniques which differ from those for handling natural fibre ropes.

20.10.2 Man-made fibre ropes are relatively stronger than those of natural fibre and so for any given breaking strain have appreciably smaller circumferences, but wear or damage will diminish strength to a greater extent than would the same amount of wear or damage on a natural fibre rope. Recommendations for substitution of natural fibre ropes by man-made fibre ropes are given in the following table:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Manila Dia</th>
<th>Polyamide (Nylon etc.) Dia</th>
<th>Polyester (Terylene etc.) Dia</th>
<th>Polypropylene Dia</th>
</tr>
</thead>
<tbody>
<tr>
<td>48mm</td>
<td>(6) 48mm</td>
<td>(6) 48mm</td>
<td>(6) 48mm</td>
<td>(6) 48mm</td>
</tr>
<tr>
<td>56mm</td>
<td>(7) 48mm</td>
<td>(6) 48mm</td>
<td>(6) 52mm</td>
<td>(6.5) 56mm</td>
</tr>
<tr>
<td>64mm</td>
<td>(8) 52mm</td>
<td>(6.5) 52mm</td>
<td>(6.5) 56mm</td>
<td>(7)</td>
</tr>
<tr>
<td>72mm</td>
<td>(9) 60mm</td>
<td>(7.5) 60mm</td>
<td>(7.5) 64mm</td>
<td>(8)</td>
</tr>
<tr>
<td>80mm</td>
<td>(10) 64mm</td>
<td>(8) 64mm</td>
<td>(8) 72mm</td>
<td>(9)</td>
</tr>
<tr>
<td>88mm</td>
<td>(11) 72mm</td>
<td>(9) 72mm</td>
<td>(9) 80mm</td>
<td>(10)</td>
</tr>
<tr>
<td>96mm</td>
<td>(12) 80mm</td>
<td>(10) 80mm</td>
<td>(10) 88mm</td>
<td>(11)</td>
</tr>
<tr>
<td>112mm</td>
<td>(14) 88mm</td>
<td>(11) 88mm</td>
<td>(11) 96mm</td>
<td>(12)</td>
</tr>
</tbody>
</table>

* Diameter given for 3-strand, size no for 8-strand plated.

20.10.3 Careful inspection of man-made fibre ropes for wear externally and internally is necessary. A high degree of powdering between strands indicates excessive wear and reduced strength. Ropes with high stretch suffer greater inter-strand wear than others. Hardness and stiffness in some ropes, polyamide (nylon) in particular, may also indicate overworking.

20.10.4 Unlike natural fibre ropes, man-made fibre ropes give little or no audible warning of approaching breaking point.
20.10.5 Rope of man-made material stretches under load to an extent which varies according to the material. Polyamide rope stretches the most and imparted to man-made fibre rope, which may be up to double that of natural fibre rope, is usually recovered almost instantaneously when tension is released. A break in the rope may therefore result in a dangerous back-lash and an item of running gear breaking loose may be projected with lethal force. Snatching of such ropes should be avoided; where it may occur inadvertently, personnel should stand well clear of the danger areas. The possibility of a mooring or towing rope parting under the load is reduced by proper care, inspection and maintenance and by its proper use in service.

20.10.6 Man-made fibre ropes may easily be damaged by melting if frictional heat is generated during use. Too much friction on a warping drum may fuse the rope with the consequential sticking and jumping of turns, which can be dangerous. Polypropylene is more liable to soften than other material. To avoid fusing, ropes should not be surged unnecessarily on winch barrels. For this reason, a minimum of turns should be used on the winch barrel; three turns are usually enough but on whelped drums one or two extra turns may be needed to ensure a good grip; these should be removed as soon as practicable.

20.10.7 The method of making eye splices in ropes of man-made fibres should be chosen according to the material of the rope.

(a) Polyamide (nylon) and polyester fibre ropes need four full tucks in the splice each with the completed strands of the rope followed by two tapered tucks for which the strands are halved and quartered for one tuck each respectively. The length of the splicing tail from the finished splice should be equal to at least three rope diameters. The portions of the splice containing the tucks with the reduced number of filaments should be securely wrapped with adhesive tape or other suitable material.
(b) Polypropylene ropes should have at least three but not more than four full tucks in the splice. The protruding spliced tails should be equal to three rope diameters at least

(c) Polythene ropes should have four full tucks in the splice with protruding tails of three rope diameters at least

20.10.8 Mechanical fastenings should not be used in lieu of splices on man-made fibre ropes because strands may be damaged during application of the mechanical fastening and the grip of the fastenings may be much affected by slight unavoidable fluctuations in the diameter of the strands.

20.10.9 Man-made fibre stoppers of like material (but not polyamide) should be used on man-made fibre mooring lines, preferably using the "West Country" method (double and reverse stoppering).

20.11 Work with visual display units (VDUs)

20.11.1 Personnel should be given adequate individual training in the use and capabilities of VDUs. This training should be adapted to the needs and ability of the person and the type of equipment.

20.11.2 Any person using VDUs regularly or frequently and for lengthy periods should be given an eye test by a qualified person before beginning such work and at regular intervals thereafter. If either the eye test or examination by an ophthalmologist shows that the person needs special glasses for this work these should be provided.

20.11.3 VDUs should be so positioned that there is sufficient room to move, as necessary around the equipment. Care should be taken to ensure that cables and wiring do not cause a hazard by obstructing movement.

20.11.4 Lighting should be adequate for the task, with glare and reflection cut to a minimum, and the display on screen should be clear and easy to read. The operator should adjust the brightness and contrast to suit the lighting.
When appropriate the operator should be given short rest periods away from the equipment

20.11.5 There should be adequate leg room and the chair should be comfortable and stable, with adjustable seat height and back rest. The chair should be adjusted by each user to a comfortable position for working - arms approximately horizontal and eyes at the same level as the top of the screen. The keyboard and screen should be adjusted to a comfortable position for keying and viewing.

20.11.6 Exceptionally, certain forms of medication may impair working efficiency on a VDU. Personnel should be aware of this possibility and should seek medical advice if necessary

20.11.7 Further guidance on the safe use of VDUs is contained in the Health and Safety Executive publication "Visual Display Units" obtainable from The Stationery Office.

20.12 Personnel Lifts and Lift Machinery

20.12.1 Before a lift is put into normal service it must be tested and examined by a competent person and a certificate or report issued.

20.12.2 Regular examination must be carried out by a competent person at intervals not exceeding six months and a certificate or report issued. More detailed examination and testing of parts of the lift installation must be earned out at periodic intervals.

20.12.3 A person chosen to act as a competent person must be over 18 and have such practical and theoretical knowledge and actual experience of the type of lift which they have to examine, as will enable them to detect defects or weaknesses and to assess their importance in relation to the safety of the lift.
20.12.4 Details of the tests and examinations required for the issue of a certificate are given in BS 5655: 1986 and equivalent Standards Guidance is also contained in Guidance Note PM 7 from the Health and Safety Executive - Lifts: Thorough Examination and Testing.

20.12.5 An initial risk assessment must be made to identify hazards associated with work on each lift installation, including work requiring access to the lift trunk Safe working procedures must be drawn up for each lift installation. Persons who are to be authorised to carry out work on or inspection of the lift installation must comply with these procedures.

20.12.6 The specific areas that the risk assessment should address should include, as appropriate:
(a) whether there are safe clearances above and below the car at the extent of its travel;
(b) whether a car top control station is fitted and its means of operation;
(c) the working conditions in the machine and pulley rooms.

20.12.7 Based on the findings of the risk assessment, it is recommended that a permit-to-work system, as described in Chapter 16, is adopted when it is necessary for personnel to enter the lift trunk or to override the control safety systems. It is strongly recommended that no person should work alone on lifts.

20.12.8 Any work carried out on lifts must only be performed by authorised persons familiar with the work and the appropriate safe working procedures. These procedures must include provision for both the safety of persons working on the lift and others who may also be at risk such as intending passengers.

20.12.9 Appropriate safety signs must be prominently displayed in the area and also on control equipment such as call lift buttons. Barriers must be used
when it is necessary for lift landing doors to remain open to the lift trunk

20.12.10 Experience indicates that the most important single factor in minimising risk of accidents is the avoidance of misunderstandings between personnel. A means of communication to the authorising officer and between those involved in working on the lift must be established and maintained at all times. This might be by telephone, portable-hand held radio or a person-to-person chain. Whatever the arrangement, action should only be taken as a result of the positive receipt of confirmation that the message is understood.

20.12.11 Before attempting to gain access to the trunk whenever possible the mains switch should be locked in the OFF position (or alternatively the fuses should be withdrawn and retained in a safe place) and an appropriate safety sign must be positioned at the point of such isolation. This should include both main and emergency supplies. In addition, the landing doors should not be allowed to remain open longer than necessary, the machine room should be protected against unauthorised entry and after completion of work a check must be made to ensure that all equipment used in the operation has been cleared from the well.

20.12.12 When it is necessary for personnel to travel on top of a car safety can be enhanced considerably by the use of the car top control station (comprising a stopping device and an inspection switch/control device) required by BS 2655 or an equivalent Standard. Account should be taken of the arrangement and location of the control station i.e. whether the stopping device can be operated before stepping on to the car top. Persons must not travel on the top of the lift car if no stopping device a fitted.

20.13 Laundry equipment

20.13.1 All personnel required to work in the laundry or use any part of the equipment there must be fully instructed on the proper operation of the machinery. A person under 18 years of age should not work on industrial washing machines, hydro-extractors, calenders or garment presses unless they
are fully instructed as to precautions to be observed, and have received sufficient training in work at the machine or are under close supervision by a suitably experienced person.

20.13.2 Equipment should be inspected before use for faults and damage. Particular attention should be paid to the automatic cut-off or interlocking arrangements on washing machines, hydro-extractors etc. and the guards and emergency stops on presses, calenders, mangling and wringing machines. Any defect or irregularity found during inspection, or apparent during operation of the equipment, should be reported immediately and the use of the machine discontinued until such time as any necessary repairs or adjustments have been carried out A notice warning against use should be displayed prominently on the defective machine.

20.13.3 Frequent and regular inspection, with thorough checking of all electrical equipment and apparatus, is also necessary to ensure the standard of maintenance essential for laundries.

20.13.4 Machines should not be overloaded and loads should be distributed uniformly.

20.13.5 Reliance should not be placed entirely on interlocking or cut-off arrangements on the doors of washing machines, hydro-extractors and drying tumblers etc; doors should not be opened until all movement has ceased.
CHAPTER 21
LIFTING PLANT

21.1 Introduction

21.1.1 Based on the findings of the risk assessment, appropriate control measures should be put into place to protect those who may be affected. This chapter highlights some areas which may require attention in respect of lifting plant.

21.1.2 The general principles given in Chapter 20 apply equally to lifting plant. However, this chapter gives more specific guidance based on the regulations governing this type of equipment (see Section 7.3). Where there is any overlap, the more specific regulations apply. The regulations require that full account is taken of the principles and guidance described in this Chapter when carrying out the duties in the regulations.

21.1.3 In interpreting this chapter, proper account should be taken of any British Standards or alternative equivalents.

21.2 General requirements

21.2.1 Lifting appliances should be:-
(a) securely anchored, or
(b) adequately ballasted or counterbalanced, or
(c) supported by outriggers,
as necessary to ensure their stability when lifting.

21.2.2 If counterbalance weights are moveable, effective precautions should be taken to ensure that the lifting appliance is not used for lifting in an unstable condition. In particular all weights should be correctly installed and positioned.
21.2.3 Lifting appliances with pneumatic tyres should not be used unless the tyres are in a safe condition and inflated to the correct pressures. Means to check this should be provided.

21.2.4 The operator should check safety devices fitted to lifting appliances before work starts and at regular intervals thereafter to ensure that they are working properly.

Controls

21.2.5 Controls of lifting appliances should be permanently and legibly marked with their function and their operating directions shown by arrows or other simple means, indicating the position or direction of movement for hoisting or lowering, slewing or luffing, etc.

21.2.6 Make-shift extensions should not be fitted to controls nor any unauthorised alterations made to them. Foot-operated controls should have slip-resistant surfaces.

21.2.7 No lifting device should be used with any locking pawl, safety attachment or device rendered inoperative. If, exceptionally, limit switches need to be isolated in order to lower a crane to its stowage position, the utmost care should be taken to ensure the operation is completed safely.

Operation

21.2.8 A powered appliance should always have a person at the controls while it is in operation; it should never be left to run with a control secured in the ON position.

21.2.9 If any powered appliance is to be left unattended with the power on, loads should be taken off and controls put in "neutral" or "off" positions. Where practical, controls should be locked or otherwise inactivated to prevent accidental restarting. When work is completed, power should be shut off.
21.2.10 The person operating any lifting appliance should have no other duties which might interfere with their primary task. They should be in a proper and protected position, facing controls and, so far as is practicable, with a clear view of the whole operation.

21.2.11 Where the operator of the lifting appliance does not have a clear view of the whole of the path of travel of any load carried by that appliance, appropriate precautions should be taken to prevent danger. Generally, this requirement should be met by the employment of a competent and properly trained signaller designated to give instructions to the operator. A signaller includes any person who gives directional instructions to an operator while they are moving a load, whether by manual signals, by radio or otherwise.

21.2.12 The signaller should have a clear view of the path of travel of the load where the operator of the lifting appliance cannot see it.

21.2.13 Where necessary, additional signallers should be employed to give instructions to the first signaller.

21.2.14 Every signaller should be in a position that is:

(a) safe; and
(b) in plain view of the person to whom they are signalling unless an effective system of radio or other contact is in use.

21.2.15 All signallers should be instructed in and should follow a clear code of signals, agreed in advance and understood by all concerned in the operation. Examples of hand signals recommended for use with lifting appliances on ships are shown in Annex 21.1 Code of hand signals.

21.2.16 If a load can be guided by fixed guides, or by electronic means, or in some other way, so that it is as safely moved as if it was being controlled by a competent team of driver and signallers, signallers will not be necessary.
Use of lifting equipment

21.2.17 Loads should if possible not be lifted over a person or any access way, and personnel should avoid passing under a load which is being lifted.

21.2.18 No person should be lifted by lifting plant except where the plant has been designed or especially adapted and equipped for the purpose or for rescue or in similar emergencies.

21.2.19 All loads should be properly slung and properly attached to lifting gear, and all gear properly attached to appliances.

21.2.20 The use of lifting appliances to drag heavy loads with the fall at an angle to the vertical is inadvisable because of the friction and other factors involved and should only take place in exceptional circumstances where the angle is small, there is ample margin between the loads handled and the safe working load of the appliance, and particular care is taken. In all other cases winches should be used instead. Derricks should never be used in union purchase for such work.

21.2.21 Any lifts by two or more appliances simultaneously can create hazardous situations and should only be carried out where unavoidable. They should be properly conducted under the close supervision of a responsible person, after thorough planning of the operation. Section 21.5 provides guidance on the use of derricks in union purchase.

21.2.22 Lifting appliances should not be used in a manner likely to subject them to excessive over-turning moments.

21.2.23 Ropes, chains and slings should not be knotted.

21.2.24 A thimble or loop splice in any wire rope should have at least three tucks with a whole strand of rope and two tucks with one half of the wires
21.2.25 Lifting gear should not be passed around edges liable to cause damage without appropriate packing.

21.2.26 Where a particular type of load is normally lifted by special gear, such as plate clamps, other arrangements should only be substituted if they are equally safe.

21.2.27 The manner of use of natural and man-made fibre ropes, magnetic and vacuum lifting devices and other gear should take proper account of the particular limitations of the gear and the nature of the load to be lifted.

21.2.28 Wire ropes should be regularly inspected and treated with suitable lubricants. These should be thoroughly applied so as to prevent internal corrosion as well as corrosion on the outside. The ropes should never be allowed to dry out.

21.2.29 Lifting operations should be stopped if wind conditions make it unsafe to continue them.

21.2.30 Cargo handling equipment that is lifted onto or off ships by crane or derrick should be provided with suitable points for the attachment of lifting gear, so designed as to be safe in use. The equipment should also be marked with its own gross weight and safe working load.

21.2.31 Before any attempt is made to free equipment that has become jammed under load, every effort should first be made to take off the load safely. Precautions should be taken to guard against sudden or unexpected freeing. Others not directly engaged in the operation should keep in safe or protected positions.
21.2.32 When machinery and, in particular, pistons are to be lifted by means of screw-in eye bolts, the eye-bolts should be checked to ensure that they have collars, that the threads are in good condition and that the bolts are screwed hard down on to their collars. Screw holds for lifting bolts in piston heads should be cleaned and the threads checked to see that they are not wasted before the bolts are inserted.

**Safe Working Load (SWL)**

21.2.33 A load greater than the safe working load should not be lifted unless:
(a) a test is required by regulation (see Section 7.6.); and
(b) the weight of the load is known and is the appropriate proof load; and
(c) the lift is a straight lift by a single appliance; and
(d) the lift is supervised by the competent person who would normally supervise a test and carry out a thorough inspection; and
(e) the competent person specifies in writing that the lift is appropriate in weight and other respects to act as a test of the plant, and agrees to the detailed plan of the lift, and
(f) no person is exposed to danger thereby

21.2.34 Any grab fitted to a lifting appliance should be of an appropriate size, taking into account the safe working load of the appliance, the additional stresses on the appliance likely to result from the operation, and the material being lifted.

21.2.35 In the case of a single sheave block used in double purchase the working load applied to the wire should be assumed to equal half the load suspended from the block.

21.2.36 The safe working load of a lift truck means its actual lifting capacity, which relates the load which can be lifted to, in the case of a fork lift truck, the distance from the centre of gravity of the load from the heels of the
forks. It may also specify lower capacities in certain situations, e.g. for lifts beyond a certain height

21.3 Use of winches and cranes

21.3.1 The drum end of wire runners or falls should be secured to winch barrels or crane drums by proper dampers or U-bolts. The runner or fall should be long enough to leave at least three turns on the barrel or drum at maximum normal extension. Slack turns of wire or rope on a barrel or drum should be avoided as they are likely to pull out suddenly under load.

21.3.2 When a winch is changed from single to double gear or vice versa, any load should first be released and the clutch should be secured so that it cannot become disengaged when the winch is working.

21.3.3 Steam winches should be so maintained that the operator is not exposed to the risk of scalding by leaks of hot water and steam.

21.3.4 Before a steam winch is operated, the cylinders and steam pipes should be cleared of water by opening the appropriate drain cocks. The stop valve between winch and deck steam line should be kept unobstructed. Adequate measures should be taken to prevent steam obscuring the driver's vision in any part of a working area.

21.3.5 Ships' cranes should be properly operated and maintained in accordance with manufacturers' instructions. Companies, employers and masters, as appropriate, should ensure that sufficient technical information is available including the following information:-
(a) Length, size and safe working load of falls and topping lifts.
(b) Safe working load of all fittings;
(c) Boom limiting angles;
(d) Manufacturers' instructions for replacing wires, topping up hydraulics and other maintenance as appropriate.
21.3.6 Power operated rail mounted cranes should have the following facilities incorporated in their control systems:-
(a) facilities to prevent unauthorised startup;
(b) an efficient braking mechanism which will arrest the motion along the rails, and where safety constraints require, emergency facilities operated by readily accessible controls or automatic systems should be available for braking or stopping equipment in the event of failure of the main facility;
(c) guards which reduce as far as possible the risk of the wheels running over persons’ feet, and which will remove loose materials from the rails.

21.3.7 When a travelling crane is moved, any necessary holding bolts or clamps should be replaced before operations are resumed.

21.3.8 Access to a crane should be always by the proper means provided. Cranes should be stationary while accessing.

21.4 Use of derricks

21.4.1 Ships’ derricks should be properly rigged and employers and masters should ensure that rigging plans are available containing the following information:-
(a) position and size of deck eye-plates;
(b) position of inboard and outboard booms;
(c) maximum headroom (i.e. permissible height of cargo hook above hatch coaming);
(d) maximum angle between runners;
(e) position, size and safe working load of blocks;
(f) length, size and safe working load of runners, topping lifts, guys and preventers;
(g) safe working load of shackles;
(h) position of derricks producing maximum forces (e.g. as shown in figure 19 of British Standard BS MA 48);
(i) optimum position for guy and preventers to resist maximum forces as at (h);
(j) combined load diagrams showing forces for a load of 1 tonne or the safe working load;
(k) guidance on the maintenance of the derrick rig.

21.4.2 The operational guidance in the remainder of this section applies generally to the conventional type of ship's derrick. For other types, such as the "Hallen" and "Stulken" derricks, manufacturers' instructions should be followed.

21.4.3 Runner guides should be fitted to all derricks so that when the runner is slack, the bight is not a hazard to persons walking along the decks. Where rollers are fitted to runner guides, they should rotate freely.

21.4.4 Before a derrick is raised or lowered, all persons on deck in the vicinity should be warned so that no person stands in, or is in danger from, bights of wire and other ropes. All necessary wires should be flaked out.

21.4.5 When a single span derrick is being raised, lowered or adjusted, the hauling part of the topping lift or bull-wire (i.e. winch end whip) should be adequately secured to the drum end. (see 21.3.1)

21.4.6 The winch driver should raise or lower the derrick at a speed consistent with the safe handling of the guys.

21.4.7 Before a derrick is raised, lowered or adjusted with a topping lift purchase, the hauling part of the span should be flaked out for its entire length in a safe manner. Someone should be available to assist the person controlling the wire on the drum and keeping the wire clear of turns and in making fast to the bitts or cleats. Where the hauling part of a topping lift purchase is led to a derrick span winch, the bull-wire should be handled in the same way.
21.4.8 To fasten the derrick in its final position, the topping lift purchase should be secured to bitts or cleats by first putting on three complete turns followed by four crossing turns and finally securing the whole with a lashing to prevent the turns jumping off due to the wire’s natural springiness.

21.4.9 When a derrick is lowered on a topping lift purchase, someone should be detailed for lifting and holding the pawl bar ready to release it should the need arise; the pawl should be fully engaged before the topping lift purchase or bull-wire is released. The person employed on this duty should not attempt or be given any other task until this operation is complete; in no circumstances should the pawl bar be wedged or lashed up.

21.4.10 A derrick with a topping winch, and particularly one that is self-powered, should not be topped hand against the mast, table or clamp in such a way that the initial heave required to free the pawl bar prior to lowering the derrick cannot be achieved without putting an undue strain on the topping lift purchase and its attachments.

21.4.11 A heel block should be secured additionally by means of a chain or wire so that the block will be pulled into position under load but does not drop when the load is released.

21.4.12 The derrick should be lowered to the deck or crutch and properly secured whenever repairs or changes to the rig are to be carried out

21.4.13 If heavy cargo is to be dragged under deck with ship’s winches, the runner should be led directly from the heel block to avoid overloading the derrick boom and rigging. Where a heavy load is to be removed, a snatch block or bull wire should be used to provide a fair-lead for the runner and to keep the load clear of obstructions.
21.5 Use of derricks in union purchase

21.5.1 When using union purchase the following precautions should be strictly taken to avoid excessive tensions:
(a) the angle between the married runners should not normally exceed 90° and an angle of 120° should never be exceeded;
(b) the cargo sling should be kept as short as possible so as to clear the bulwarks without the angle between the runners exceeding 90° (or 120° in special circumstances);
(c) derricks should be topped as high as practicable consistent with safe working;
(d) the derricks should not be rigged further apart than is absolutely necessary.

21.5.2 The following examples will show how rapidly loads increase on derricks, runners and attachments as the angle between runners increases:
- At 60° included angle, the tension in each runner would be just over half the load;
- At 90° the tension would be nearly three-quarters of the load;
- At 195° the tension would be nearly 12 times the load.

21.5.3 When using union purchase, winch operators should wind in and pay out in step, otherwise dangerous tensions may develop in the rig.

21.5.4 An adequate preventer guy should always be rigged on the outboard side of each derrick when used in union purchase. The preventer guy should be looped over the head of the derrick, and as close to and parallel with the outboard guy as available fittings permit. Each guy should be secured to individual and adequate deck or other fastenings.

21.5.5 Narrow angles between derricks and outboard guys and between outboard guys and the vertical should be avoided in union purchase as these materially increase the loading on the guys. The angle between the outboard
derrick and its outboard guy and preventer should not be too large and may cause
the outboard derrick to jack-knife. In general, the inboard derrick guys and preventer
should be secured as nearly as possible at an angle of 90° to the derrick.

21.6 Use of stoppers

21.6.1 Where fitted, mechanical topping lift stoppers should be used. Where chain
stoppers are used, they should ALWAYS be applied by two half-hitches in the form
of a cow hitch suitably spaced with the remaining chain and rope tail backed round
the wire and held taut to the wire.

21.6.2 A chain stopper should be shackled as near as possible in line with the span
downhaul and always to an eyeplate, not passed round on a bight which would
induce bending stresses similar to those in a knotted chain.

21.6.3 No stopper should be shackled to the same eyeplate as the lead block for
the span downhaul; this is particularly hazardous when the lead block has to be
turned to take the downhaul to the winch or secure it to bitts or cleats.

21.6.4 The span downhaul should always be eased to a stopper and the stopper
should take the weight before turns are removed from the winch, bitts or cleats.

21.7 Overhaul of cargo gear

21.7.1 When a cargo block or shackle is replaced, care should be taken to ensure
that the replacement is of the correct type, size and safe working load necessary
for its intended use.

21.7.2 All shackles should have their pins effectively secured or seized with wire.

21.7.3 A special check should be made on completion of the work to
ensure that all the split pins in blocks etc. have been replaced and secured.

11.7.4 On completion of the gear overhaul, all working places should be cleaned of oil or grease.

21.8 Trucks and other vehicles/appliances

21.8.1 Where vehicles/work-trucks or other mechanical appliances are used aboard the vessel to carry personnel, they should wherever possible be constructed so as to prevent them overturning, or should be equipped or adapted to limit the risk to those carried by one or more of the following protection measures:
(a) an enclosure for the driver;
(b) a structure ensuring that, should the vehicle overturn, safe clearance remains between the ground and the parts of the vehicle where people are located when it is in use;
(c) a structure restraining the workers on the driving seat so as to prevent them from being crushed.

These protection structures may be an integral part of the vehicle/work equipment; they are not required when the work equipment is stabilised or where the equipment design makes roll-over impossible.

21.8.2 Personnel other than the driver should not be carried on a truck unless it is constructed or adapted for the purpose. Riding on the forks of a truck is particularly dangerous. The driver should be careful to keep all parts of the body within the limits of the width of the truck or load.

21.8.3 Trucks for lifting and transporting should be used only by competent persons and only when the ship is in still water; they should never be used when vessels are in a seaway.

21.8.4 Appliances powered by internal combustion engines should not be used in enclosed spaces unless the spaces are adequately ventilated. The engine should not be left running when the truck is idle.
21.8.5 When not in use or left unattended whilst the vessel is in port, trucks
for lifting and transporting should be aligned along the length of the ship with
brakes on, operating controls locked and, where applicable, the forks tilted
forward flush with the deck and clear of the passageway. If the trucks are on
an incline, their wheels should be chocked. If not to be used for some time,
and at all times whilst at sea, appliances should be properly secured to
prevent movement.

21.8.6 No attempt should be made to handle a heavy load by the
simultaneous use of two trucks. A truck should not be used to handle a load
greater than its marked capacity or to move insecure or unsafe loads.

21.8.7 Tank containers should not be lifted directly with the forks of fork lift
trucks, because of the risks of instability and of damaging the container with
the ends of the forks. Tank containers may be lifted using fork lift trucks fitted
with suitably designed side or top lifting attachments but care should be
exercised due to the risk of surge in partly filled tanks.

21.9 Defect reporting and testing - Advice to competent person

21.9.1 There is a legal requirement for lifting plant to be tested every five
years (see Section 7.6). This section gives advice to the competent person
carrying out the test.

21.9.2 The requirements for testing a lifting plant will be met if before use one
of the following appropriate tests is carried out:-
(a) proof loading the plant concerned; or
(b) in appropriate cases by testing a sample to destruction; or
(c) in the case of re-testing after repairs or modifications, such a test that
satisfies the competent person who subsequently examines the plant
(the re-testing of ships’ lifting appliances may be effected by means of a
static test e.g. by dynamometer where appropriate; or
(d) in the case of a lift truck, the test should be a functional test to verify
that the truck is able to perform the task for which it was designed. This test should include a check to ensure that all controls function correctly and that all identification and capacity plates are fitted and contain correct information. A dynamic test should include travelling and manoeuvring, stacking, a lowering speed check and tilt leakage test with the rated load including relevant attachments where appropriate. Following the test the truck should be examined to ensure that it has no defects which would render it unsuitable for use.

### 21.9.3 Where proof loading is part of a test the test load applied should exceed the safe working load as specified in the relevant Standard, or in other cases by at least the following:

<table>
<thead>
<tr>
<th>Proof Load (Tonnes)</th>
<th>Lifting Appliances</th>
<th>Single Sheave Cargo and Pulley Blocks</th>
<th>Multi Sheave Cargo and Pulley Blocks</th>
<th>Lifting Beams and Frames, etc.</th>
<th>Other Lifting Gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>SWL x 1.25</td>
<td>SWLx4</td>
<td>SWLx2</td>
<td>SWLx2</td>
<td>SWL x 2</td>
</tr>
<tr>
<td>11-20</td>
<td>SWL x 1.25</td>
<td>SWLx4</td>
<td>SWLx2</td>
<td>SWL x 1.04 + 9.6</td>
<td>SWL x 2</td>
</tr>
<tr>
<td>21-25</td>
<td>SWL x 5</td>
<td>SWLx4</td>
<td>SWLx2</td>
<td>SWL x 1.04 + 9.6</td>
<td>SWL x 2</td>
</tr>
<tr>
<td>26-50</td>
<td>SWL x 4</td>
<td>SWL x 0.933+ 27</td>
<td>SWL x 1.04 + 9.6</td>
<td>SWL x 1.22 + 20</td>
<td></td>
</tr>
<tr>
<td>51-160</td>
<td>SWL x 1.1</td>
<td>SWLx4</td>
<td>SWL x 0.933+ 27</td>
<td>SWL x 1.04 + 9.6</td>
<td>SWL x 1.22 + 20</td>
</tr>
<tr>
<td>161+</td>
<td>SWL x 1.1</td>
<td>SWLx4</td>
<td>SWLx1.1</td>
<td>SWL x 1.1</td>
<td>SWL x 1.22 + 20</td>
</tr>
</tbody>
</table>

Note: Where a lifting appliance is normally used with a specific removable attachment and the weight of that attachment is not included in the marked safe working load as allowed in 7.7.7 of this code then for the purposes of using the above table the safe working load of that appliance should be taken as being the marked safe working load plus the weight of the attachment.

### 21.9.4 To fall within the exception under Regulation 7 (1), rope stings should be spliced according to appropriate Standards or a method which can be shown to be equally as safe and efficient under all conditions of use. Ferule-secured eye terminations are not splices and individual proof testing is required.

### 21.9.5 Any defect found in any lifting plant including plant provided by a shore authority, should be reported immediately to the master or to another responsible person who should take appropriate action.
21.9.6 Similar principles apply to cargo securing devices as to lifting equipment. The crew and persons employed for the securing of cargoes should be instructed in the correct application and use of the cargo securing gear on board the ship. For guidance on the securing of cargoes and handling of security devices refer to the ship's approved Cargo Securing Manual.
Annex 21.1

Code of hand signals

Examples of hand signals recommended for use with lifting appliances on ships (see paragraph 21.2.15).

(Note: the examples shown have been in common use in United Kingdom registered ships in recent years; but other standards may also be encountered.)
Code of hand signals (continued)

- SIGNAL WITH ONE HAND
  OTHER HAND ON HEAD

- SIGNAL WITH ONE HAND
  OTHER HAND ON HEAD

- DERRICKING JIB

- TELESCOPING JIB

- JIB UP

- JIB DOWN

- EXTEND JIB

- RETRACT JIB

- TRAVEL TO ME
- SIGNAL WITH BOTH HANDS

- TRAVEL FROM ME

- TRAVEL IN DIRECTION INDICATED

- ROTATE WRIST
  OF LEFT HAND

- TWISTLOCKS ON/OFF

- OPERATIONS CEASE
CHAPTER 22
MAINTENANCE

22.1 Introduction

22.1.1 Based on the findings of the risk assessment, appropriate control measures should be put into place to protect those who may be affected. This chapter highlights some areas which may require attention in respect of maintenance.

22.2 General

22.2.1 No maintenance work or repair which might affect the supply of water to the fire main or sprinkler system should be started without the prior permission of the master and chief engineer.

22.2.2 No alarm system should be isolated without the permission of the master and chief engineer.

22.2.3 Means of access to fire fighting equipment, emergency escape routes and watertight doors should never be obstructed.

22.2.4 Safety guards on machinery or equipment should only be removed when the machinery is not operating. If removal is essential for maintenance or examination of the equipment, the following precautions should be taken:
   - removal should be authorised by a responsible person, and only a competent person should carry out the work or examination;
   - there should be adequate clear space and lighting for the work to be done;
   - anyone working close to the machinery should be told what the risks are and instructed in safe systems of work and precautions to take;
   - a warning notice should be conspicuously posted.

22.2.5 Solvents used for cleaning can be toxic, and should always be used in accordance with the manufacturers’ instructions. The area should be well
ventilated, and in confined spaces, smoking should be prohibited.

22.3 Floor plates and handrails

22.3.1 Lifting handles should be used when a floor plate is removed or replaced. When lifting handles are not provided, the plate should be levered up with a suitable tool and a chock inserted before lifting. On no account should fingers be used to prise up the edges.

22.3.2 Whenever floor plates or handrails are removed, warning notices should be posted, the openings should be effectively fenced or guarded and the area well-illuminated.

22.4 Maintenance of machinery

22.4.1 Before machinery is serviced or repaired, measures should be taken to prevent it being turned on or started automatically or from a remote control system.

• Electrically-operated machinery should be isolated from the power supply
• Steam-operated machinery should have both steam and exhaust valves securely closed and, where possible, the valves locked or tied shut or some other means employed to indicate that the valves should not be opened. The same care is required when dealing with heated water under pressure as is required when working on steam-operated machinery or pipework.
• In all cases, warning notices should be posted at or near the controls giving warning that the machinery concerned is not to be used.

22.4.2 Where valves or filter covers have to be removed or similar operations have to be performed on pressurised systems, that part of the system should be isolated by closing the appropriate valves. Drain cocks should be opened to ensure that pressure is off the system.

22.4.3 When joints of pipes, fittings etc. are being broken, the fastenings should not be completely removed until the joint has been broken and it has
been established that no pressure remains within.

22.4.4 Before a section of the steam pipe system is opened to the steam supply, all drains should be opened. Steam should be admitted very slowly and the drains kept open until all the water has been expelled.

22.4.5 Maintenance or repairs to, or immediately adjacent to, moving machinery should be permitted only in circumstances where no danger exists or where it is impracticable for the machinery to be stopped. Close-fitting clothing should be worn and long hair should be covered (see 4.5.5). The officer in charge should consider whether it is necessary in the interests of safety for a second person to be in close attendance whilst the work is being carried out.

22.4.6 Heavy parts of dismantled machinery temporarily put aside should be firmly secured against movement in a seaway and, as far as practicable, be dear of walkways. Sharp projections on them should be covered when reasonably practicable.

22.4.7 Spare gear tools and other equipment or material should never be left lying around, especially near to stabiliser or steering gear rams and switchboards.

22.4.8 A marlin spike, steel rod, or other suitable device should be used to align holes in machinery being reassembled or mounted; fingers should never be used.

22.4.9 When guards or other safety devices have been removed from machinery, they should be replaced immediately the work is completed and before the machinery or equipment is tested.

22.4.10 An approved safety lamp should always be used for illuminating spaces where oil or oil vapour is present. Vapour should be dispersed by
ventilation before work is done.

22.5 Boilers

22.5.1 Boilers should be opened only under the direction of an engineering officer. Care should be taken to check, after emptying, that the vacuum is broken before manhole doors are removed. Even if an air cock has been opened to break the vacuum, the practice should always be to loosen the manhole door nuts and break the joint before the removal of the dogs and knocking in the doors. The top manhole doors should be removed first. Personnel should stand clear of hot vapour when doors are opened.

22.5.2 Personnel should not enter any boiler furnace or boiler flue until it has cooled sufficiently to make work in such places safe.

22.5.3 Before entry is permitted to a boiler which is part of a range of two or more boilers, the engineer officer in charge should ensure that either:
(a) all inlets through which steam or water might enter the boiler from any other part of the range have been disconnected, drained and left open to atmosphere;
(b) all valves or cocks, including blowdown valves controlling entry of steam or water have been closed and securely locked, and notices posted to prevent them being opened again until authorisation is given.

The above precautions should be maintained whilst personnel remain in the boiler.

22.5.4 Personnel cleaning tubes, scaling boilers, and cleaning backends, should wear appropriate protective clothing and equipment including goggles and respirators.

22.5.5 A boiler is a confined space, and therefore potentially a dangerous space. Special care should be exercised before a boiler is entered which has not been in use for some time or where chemicals have been used to
prevent rust forming. The atmosphere may be deficient in oxygen and tests should be carried out before any person is allowed to enter. See Chapter 17 for advice on entering enclosed spaces.

22.6 Auxiliary machinery and equipment

22.6.1 Before work is started on an electric generator or auxiliary machine, the machine should be stopped and the starting air valve or similar device should be secured so that it cannot be operated. A notice should be posted warning that the machine is not to be started nor the turning gear used. To avoid the danger of motoring and electric shock to any person working on the machine, it should be isolated electrically from the switchboard or starter before work is commenced. The circuit-breaker should be opened and a notice posted at the switchboard warning personnel that the breaker is to be closed. Where practicable, the circuit-breaker should be locked open.

22.6.2 No attempt should be made to start a diesel engine without first barring round with the indicator cocks open. The barring gear should then be disengaged before starting the engine.

22.6.3 Oily deposits of flammable material should never be allowed to build up in the way of diesel engine relief valves, crankcase explosion doors or scavenge belt safety discs.

22.6.4 Flammable coatings should never be applied to the internal surfaces of air starting reservoirs.

22.6.5 When testing a diesel engine fuel injector or other high pressure parts of injection equipment, jets should not be allowed to spray unprotected skin.

22.6.6 Oxygen should on no account be used for starting engines. To do so would probably cause a violent explosion.
22.7 Main engines

22.7.1 Where necessary, suitable staging, adequately secured, should be used to provide a working platform.

22.7.2 Before anyone is allowed to enter or work in the main engine crankcase or gear case, the turning gear should be engaged and a warning notice posted at the start position. The spaces should be well ventilated and the atmosphere tested.

22.7.3 Before the main engine turning gear is used, a check should be made to ensure that all personnel are clear of the crankcase and any moving part of the main engine, and that the duty deck officer has confirmed that the propeller is clear.

22.7.4 If a hot bearing has been detected in a closed crankcase, the crankcase should not be opened until sufficient time has been allowed for the bearing to cool down, otherwise the entry of air could create an explosive air/oil vapour mixture.

22.7.5 The opened crankcase or gear case should be well-ventilated to expel all flammable gases before any source of ignition, such as a portable lamp (unless of an approved safety type) is brought near to it.

22.7.6 Before the main engine is restarted, a responsible engineer officer should check that the shaft is clear and inform the duty deck officer who should confirm that the propeller is clean.

22.8 Refrigeration machinery and refrigerated compartments

22.8.1 No one should enter a refrigerated chamber without first informing a responsible officer (see section 15.10). Should it be known or suspected that the refrigerant has leaked into any compartment, no attempt should be made to enter that compartment without appropriate precautions being taken.
22.8.2 Personnel charging or repairing refrigeration plants should fully understand the precautions to be observed when handling the refrigerant.

22.8.3 When refrigerant plants are being charged through a charging connection in the compressor suction line, it is sometimes the practice to heat the cylinder to evaporate the last of the liquid refrigerant. This should be done only by placing the cylinder in hot water or some similar indirect method and never by heating the cylinder directly with a blow lamp or other flame. Advice on the handling and storage of gas cylinders is given in section 23.8.

22.8.4 If it is necessary for repair or maintenance to apply heat to vessels containing refrigerant, appropriate valves should be opened to prevent buildup of pressure within the vessels.

22.8.5 Further advice on working with refrigeration plant is given in section 15.10.

22.9 Steering gear

22.9.1 Generally, work should not be done on steering gear when a ship is under way. If it is necessary to work on steering gear when the vessel is at sea, the ship should be stopped and suitable steps taken to immobilise the rudder by closing the valves on the hydraulic cylinders or by other appropriate and effective means.

22.10 Hydraulic and pneumatic equipment

22.10.1 Before repairs to or maintenance of hydraulic and pneumatic equipment is undertaken any load should be removed, or if this is not practical, adequately supported by other means. All pressure in the system should be released. The part being worked upon should be isolated from the power source and a warning notice displayed by the isolating valve, which should be locked.
22.10.2 Precautions should be taken against the possibility of residual pressure being released when unions or joints are broken.

22.10.3 Absolute cleanliness is essential to the proper and safe operation of hydraulic and pneumatic system; the working area and tools, as well as the system and its components, should be kept clean during servicing work. Care should also be taken to ensure that replacement units are clean and free from any contamination, especially fluid passages.

22.10.4 Only replacement components which comply with manufacturers’ recommendations should be used. Any renewed or replacement item of equipment should be properly inspected or tested before being put into operation within the system.

22.10.5 Since vapours from hydraulic fluid may be flammable, naked lights should be kept away from hydraulic equipment being tested or serviced.

22.10.6 A jet of hydraulic fluid under pressure should never be allowed to spray onto unprotected skin. Any hydraulic fluid spilt on the skin should be thoroughly washed off.

22.11 Electrical equipment

22.11.1 The risks of electric shock are much greater on board ship than they are normally ashore because wetness, high humidity and high temperature (including sweating) reduce the contact resistance of the body. In those conditions, severe and even fatal shocks may be caused at voltages as low as 60V. It should also be borne in mind that cuts and abrasions significantly reduce skin resistance.

22.11.2 A notice of instructions on the treatment of electric shock should be posted in every place containing electrical equipment and switchgear. Immediate on the spot treatment of an unconscious patient is essential.
Before any work is done on electrical equipment, fuses should be removed or circuit breakers opened to ensure that all related circuits are dead. If possible, switches and circuit breakers should be locked open or alternatively, a 'not to be closed' notice attached (see section 22.6). Where a fuse has been removed, it should be retained by the person working on the equipment until the job is finished. A check should be made that any interlocks or other safety devices are operative. Additional precautions are necessary to ensure safety when work is to be undertaken on high voltage equipment (designed to operate at a nominal system voltage in excess of 1 Kv). The work should be carried out by or under the direct supervision of, a competent person with sufficient technical knowledge and a permit-to-work system should be operated.

Some parts of certain types of equipment may remain live even when the equipment is switched off. Power should always be cut off at the mains.

Flammable materials should never be left or stored near switchboards.

Work on or near live equipment should be avoided if possible but when it is essential for the safety of the ship or for testing purposes, the following precautions should be taken:

- A second person, who should be competent in the treatment of electric shock, should be continually in attendance.
- The working position adopted should be safe and secure to avoid accidental contact with the live parts. Insulated gloves should be worn where practicable.
- Contact with the deck, particularly if it is wet, should be avoided. Footwear may give inadequate insulation if it is damp or has metal studs or rivets. The use of a dry insulating mat at all times is recommended.
- Contact with bare metal should be avoided. A hand-to-hand shock is
especially dangerous. To minimise the risk of a second contact should the working hand accidentally touch a live part, one hand should be kept in a trouser pocket whenever practicable.

- Wrist watches, metal identity bracelets and rings should be removed. They provide low resistance contacts with the skin. Metal fittings on clothing or footwear are also dangerous.

22.11.7 Meter probes should have only minimum amounts of metal exposed and insulation of both probes should be in good condition. Care should be taken that the probes do not short circuit adjacent connections. When measuring voltages that are greater than 250V, the probe should be attached and removed with the circuit dead.

**Servicing radio and associated electronic equipment**

22.12 Radio Equipment — General

22.12.1 Any precautions against exposure to dangerous levels of microwave radiation recommended by manufacturers should be strictly followed. Radar sets should generally not be operated with wave guides disconnected. However if it is necessary for servicing purposes, special precautions should be taken.

22.12.2 Work should not be taken within the marked safety radius of a Satellite Terminal Antenna unless its transmitter has been rendered inoperative.

22.12.3 Eyes are particularly vulnerable to microwave and ultraviolet radiation. Care should be taken to avoid looking directly into a radar aerial and waveguide while it is in operation or where arcing or sparking is likely to occur.

22.12.4 Exposure to dangerous levels of X-ray radiation may occur in the vicinity of faulty high voltage valves. Care should be exercised when fault tracing in the modulator circuits of radar equipment. An open circuited heater
of such valves can lead to X-ray radiation where the anode voltage is in excess of 5000V.

22.12.5 Vapours of some solvents used for degreasing are toxic, particularly carbon tetrachloride which should never be used. Great care should be exercised when using solvents particularly in confined spaces; there should be no smoking. Manufacturers’ instructions should be followed.

22.12.6 Some dry recorder papers used in echo sounders and facsimile recorders give off toxic fumes in use. The equipment should be well ventilated to avoid inhalation of the fumes.

22.12.7 Radio transmitters and radar equipment should not be operated when men are working in the vicinity of aerials; the equipment should be isolated from mains supply and radio transmitters earthed. When equipment has been isolated, warning notices should be placed on transmitting and radar equipment and at the mains supply point, to prevent apparatus being switched on until clearance has been received from those concerned that they have finished the outside work.

22.12.8 Aerials should be rigged out of reach of personnel standing at normal deck level or mounting easily accessible parts of the superstructure. If that is impracticable, safety screens should be erected.

22.12.9 Notices warning of the danger of high voltage should be displayed near radio transmitter aerials and lead-through insulators.

22.13 Additional electrical hazards from radio equipment

22.13.1 Where accumulators are used they should be disconnected at source; otherwise precautions should be taken to prevent short circuiting the accumulator with consequent risk of burns.
22.13.2 Live chassis connected to one side of the mains are usually marked appropriately and should be handled with caution. Where the mains are AC and a transformer is interposed, the chassis is usually connected to the earth side of the supply, but this should be verified using an appropriate meter.

22.13.3 Modem equipment often embodies a master crystal enclosed in an oven; the supply to the oven is taken from an independent source and is not disconnected when the transmitter is switched off and the mains switch is off. Mains voltage will be present inside the transmitter and care should be taken.

22.13.4 Before work is begun on the EHT section of a transmitter or other HT apparatus, with the mains switched off, all HT capacitors should be discharged using an insulated jumper inserting a resistor in the circuit to slow the rate of discharge. This precaution should be taken even where the capacitors have permanent discharge resistors fitted.

22.13.5 An electrolytic capacitor that is suspect, or shows blistering, should be replaced, since it is liable to explode when electrical supply is on. There is a similar risk when an electrolytic capacitor is discharged by a short circuit.

22.13.6 Work at or near live equipment should be avoided if possible but where it is essential for the safety of the ship or for testing purposes then the additional precautions described in 22.11.6 should be taken.

22.14 Valves and semi-conductor devices

22.14.1 Valves being removed from equipment which has recently been operating should be grasped with a heat resistant cloth; in case of large valves, e.g. power amplifier, OP and modulators, which reach a high temperature in operation, cooling down time should be allowed before they are removed. Severe burns can result if they touch bare skin.
22.14.2 Cathode ray tubes and large thermionic valves should be handled with care; although they implode when broken, there is still a risk of severe cuts from sharp-edged glass fragments. Some special purpose devices contain vapour or gas at high pressure, for example Trigatron, but these are usually covered with a protective fibre network to contain the glass should they explode.

22.14.3 Beryllia (beryllium oxide) dust is very dangerous if inhaled or if it penetrates the skin through a cut or abrasion. It may be present in some electronic components. Cathode ray tubes, power transistors, diodes and thyristors containing it will usually be identified by the manufacturers’ information provided, but lack of such information should not be taken as a positive indication of its absence. Those heat sink washers which contain it are highly polished and look like dark brass. These items should be carefully stored in their original packaging until required.

22.14.4 Physical damage to components of this kind whether they are new or defective is likely to produce dangerous dust, abrasion should be avoided, they should not be worked by tools and encapsulations should be left intact. Excessive heat can be dangerous, but normal soldering with thermal shunt is safe. Damaged or broken parts should be separately and securely packed, following the manufacturer’s instructions for return or disposal.

22.14.5 Personnel handling parts containing beryllia should wear protective clothing, including gloves, to prevent beryllia coming into contact with the skin. Tweezers should be used where practicable. If the skin does become contaminated with the dust, affected parts, particularly any cuts, should be cleaned without delay.

22.15 Work on apparatus on extension runners or on the bench

22.15.1 Chassis on extension runners should be firmly fixed, either by self-locking devices or by use of chocks, before any work is done.
22.15.2 Where units are awkward or heavy for one person to handle easily, assistance should be sought (see Chapter 19). Strain, rupture or a slipped disc can result from a lone effort.

22.15.3 Any chassis on the bench should be firmly wedged or otherwise secured to prevent it overbalancing or moving. Should a live chassis overbalance, no attempt should be made to grab it.

22.15.4 Temporary connections should be soundly made. Flexible extension cables should have good insulation and adequate current carrying capacity.

Storage batteries

22.16 General

22.16.1 When a battery is being charged it 'gases', giving off both hydrogen and oxygen. Because hydrogen is easily ignited in concentrations ranging from 4 per cent to 75 per cent in air, battery containers and compartments should be kept adequately ventilated to prevent an accumulation of dangerous gas.

22.16.2 Smoking and any type of open flame should be prohibited in a battery compartment. A conspicuous notice to this effect should be displayed at the entrance to the compartment.

22.16.3 Lighting fittings in battery compartments should be properly maintained at all times, with protective glasses in position and properly tightened. If cracked or broken glasses cannot be replaced immediately, the electric circuit should be isolated until replacements are obtained.

22.16.4 No unauthorised modifications or additions should be made to electrical equipment (including lighting fittings) in battery compartments.

22.16.5 Portable electric lamps and tools, and other portable power tools which might give rise to sparks should not be used in battery compartments.
22.16.6 The battery compartment should not be used as a store for any materials or gear not associated.

22.16.7 A short circuit of even one cell may produce an arc or sparks which may cause an explosion of any hydrogen present. Additionally, the very heavy current which can flow in the short circuiting wire or tool may cause burns due to rapid overheating of the metal.

22.16.8 Insulation and/or guarding of cables in battery compartments should be maintained in good condition.

22.16.9 All battery connections should be kept clean and tight to avoid sparking and overheating. Temporary clip-on connections should never be used as they may be worked loose due to vibration and cause a spark or short circuit.

22.16.10 Metal tools, such as wrenches or spanners, should never be placed on top of batteries as they may cause sparks or short circuits. The use of insulated tools is recommended.

22.16.11 Jewellery, watches and rings etc. should be removed when working on batteries. A short circuit through any of these items will heat it rapidly and may cause a severe skin burn. If rings cannot be removed, they should be heavily taped in insulating material.

22.16.12 The battery chargers and all circuits fed by the battery should be switched off when leads are being connected or disconnected. If a battery is in sections, it may be possible to reduce the voltage between cells in the work area, and hence the severity of an accidental short circuit or electric shock, by removing the jumper leads between sections before work is begun. It should be appreciated that whilst individual cell voltages may not prevent a shock risk, dangerous voltages can exist when numbers of cells are connected.
together in series. A lethal shock needs a current of only tens of milliamps and particular care should be exercised when the voltage exceeds 50V.

**22.16.13** Battery cell vent plugs should be screwed tight while connections are being made or broken.

**22.16.14** The ventilation tubes of battery boxes should be examined regularly to ensure that they are free from obstruction.

**22.16.15** Lids of battery boxes should be fastened while open for servicing and properly secured again when the work is finished.

**22.16.16** Batteries should be kept battened into position to prevent shifting in rough weather.

**22.16.17** Alkaline and lead-acid batteries should be kept in separate compartments or separated by screens. Where both lead-acid and alkaline batteries are in use, great care should be exercised to keep apart the materials and tools used in servicing each type, as contamination of the electrolyte may cause deterioration of battery performance and mixing of the two electrolytes produce a vigorous chemical reaction which could be very dangerous.

**22.16.18** Both add and alkaline electrolytes are highly corrosive. Immediate remedial action should be taken to wash off any accidental splashes on the person or on the equipment Hands should always be washed as soon as the work is finished.

**22.16.19** Batteries should always be transported in the upright position to avoid spillage of electrolyte. A sufficient number of men should be employed since the batteries are heavy and painful strains or injury can otherwise easily result (see Chapter 19).
22.17 Lead-acid batteries

22.17.1 When the electrolyte is being prepared, the concentrated sulphuric acid should be added SLOWLY to the water IF WATER IS ADDED TO THE ACID THE HEAT GENERATED MAY CAUSE AN EXPLOSION OF STEAM, SPLATTERING ACID OVER THE PERSON HANDLING IT.

22.17.2 Goggles, rubber gloves and protective apron should be worn when acid is handled.

22.17.3 To neutralise acid on skin or clothes, copious quantities of clean fresh water should be used.

22.17.4 An eyewash bottle should be to hand in the compartment for immediate use on the eyes in case of accident. This bottle should be clearly distinguishable by touch from acid or other containers, so that it may be easily located by a person who is temporarily blinded.

22.17.5 The corrosion products which form round the terminals of batteries are injurious to skin or eyes. They should be removed by brushing, away from the body. Terminals should be protected with petroleum jelly.

22.17.6 An excessive charging rate causes acid mist to be carried out of the vents onto adjacent surfaces. This should be cleaned of with diluted ammonia water or soda solution, and affected areas then dried.

22.18 Alkaline batteries

22.18.1 The general safety precautions with this type of battery are the same as for the lead-acid batteries with the following exceptions.

22.18.2 The electrolyte in these batteries is alkaline but is similarly corrosive. It should not be allowed to come into contact with the skin or clothing, but in the case of accident the affected parts should be washed with plenty of clean
fresh water. Burns should be treated with boracic powder or a saturated solution of boracic powder. Eyes should be washed out thoroughly with water followed immediately with a solution of boracic powder (at the rate of one teaspoonful to 1/2 litre or one pint of water). This solution should be always readily accessible when the electrolyte is handled.

22.18.3 Unlike lead acid batteries, metal cases of alkaline batteries remain live at all times and care should be taken not to touch them or to allow metal tools to come into contact.
23.1 Introduction

23.1.1 Based on the findings of the risk assessment, appropriate control measures should be put into place to protect those who may be affected. This chapter highlights some areas which may require attention in respect of hot work.

23.2 General

23.2.1 Welding and flame-cutting elsewhere than in the workshop should generally be the subject of a ‘permit-to-work’ (see Chapter 16).

23.2.2 Operators should be competent in the process, familiar with the equipment to be used and instructed where special precautions need to be taken.

23.2.3 Where portable lights are needed to provide adequate illumination, they should be clamped or otherwise secured in position, not hand-held, with leads kept clear of the working area.

23.2.4 Harmful fumes can be produced during these operations from galvanising paint and other protective materials. Oxygen in the atmosphere can be depleted when using gas cutting equipment and noxious gases may be produced when welding or cutting. Special care should therefore be taken when welding and flame-cutting in enclosed spaces to provide adequate ventilation. The effectiveness of the ventilation should be checked at intervals while the work is in progress, and if appropriate local exhaust ventilation should be considered. In confined spaces, breathing apparatus may be required.
23.2.5 Suggested procedures for lighting up and shutting down are at Annex 23.1.

23.3 Personal Protective Equipment

23.3.1 Personal protective equipment complying with the relevant Standard specifications or their equivalent must be worn by the operator and as appropriate by those assisting with the operation to protect them from particles of hot metal and slag, and their eyes and skin from ultra-violet and heat radiation.

23.3.2 The operator should normally wear:
(a) welding shields or welding goggles with appropriate shade of filter lens to EN 169. Goggles are only recommended for gas welding and flame cutting;
(b) leather gauntlets;
(c) leather apron (in appropriate circumstances);
(d) long-sleeved natural fibre boiler suit or other approved protective clothing.

23.3.3 Clothing should be free of grease and oil and other flammable substances.

23.4 Pre-use equipment check

23.4.1 Welding and flame-cutting equipment should be inspected before use by a competent person to ensure that it is in a serviceable condition.

23.4.2 In cold weather, moisture trapped in the equipment may freeze and, for example, cause valves to malfunction. It is recommended that equipment is thawed out with hot water and cloths, never with naked flames.
23.5 Precautions against fire and explosion

23.5.1 Before welding, flame-cutting or other hot work is begun, a check should be made that there are no combustible solids, liquids or gases, at, below or adjacent to the area of work, which might be ignited by heat or sparks from the work. Such work should never be undertaken on surfaces covered with grease, oil or other flammable or combustible materials. Where necessary, combustible materials and dunnage should be moved to a safe distance before commencing operations. Such places should also be free of materials which could release flammable substance for example if disturbed.

23.5.2 When welding is to be done in the vicinity of open hatches, suitable screens should be erected to prevent sparks dropping down hatchways or hold ventilators.

23.5.3 Port holes and other openings through which sparks may fall should be closed where practicable.

23.5.4 Where work is being done close to or at bulkheads, decks or deckheads, the far side of the divisions should be checked for materials and substances which may ignite, and for cables, pipelines or other services which may be affected by the heat.

23.5.5 Cargo tanks, fuel tanks, cargo holds, pipelines, pumps and other spaces that have contained flammable substances should be certified as being free of flammable gases before any repair work is commenced. The testing should include, as appropriate, the testing of adjacent spaces, double bottoms, cofferdams etc. Further tests should be carried out at regular intervals and before hot work is recommenced following any suspension of the work. When preparing tankers and similar ships all tanks, cargo pumps and pipelines should be thoroughly cleaned and particular care taken with the draining and cleaning of pipelines that cannot be directly flushed using the ship pumps.
23.5.6 Welding and flame-cutting operations should be properly supervised and kept under regular observation. Suitable fire extinguishers should be kept at hand ready for use during the operation. A person with a suitable extinguisher should also be stationed to keep watch on areas not visible to the welder which may be affected.

23.5.7 In view of the risk of delayed fires resulting from the use of burning or welding apparatus, frequent checks should be made for at least two hours after the work has stopped.

23.6 Electric welding equipment

23.6.1 In order to minimise personal harm from electric shock, electric welding power sources for shipboard use should have a direct current (DC) output not exceeding 70V, with a minimum ripple. Further information on DC power sources is given in 23.6.11.

23.6.2 When DC equipment is not available, then AC output power sources may be used providing they have an integral voltage limiting device to ensure that the idling voltage (the voltage between electrode and work piece before an arc is struck between them) does not exceed 25 V rms. The proper function of the device (which may be affected by dust or humidity) should be checked each time a welding set is used. Some voltage limiting devices are affected by their angle of tilt from the vertical, so it is important that they are mounted and used in the position specified by the manufacturers. This requirement can be affected by adverse sea conditions.

23.6.3 A 'go-and-return' system utilising two cables from the welding set should be adopted; the welding return cable should be firmly clamped to the workpiece.

23.6.4 Earthing of the workpiece is used to provide protection against internal insulation failure of the welding transformer by keeping the
workpiece at or near earth potential until the protective device (e.g. a fuse) operates to cut off the mains supply. Where the welding circuit is not adequately insulated from the earthed referenced mains supply, (i.e. not constructed to one of the standards listed in Annex 23.2) the workpiece should be earthed. The 'return' cable of the welding set and each workpiece should be separately earthed to the ship's structure. The use of a single cable with hull return is not recommended. The workpiece earthing conductor should be robust enough to withstand possible mechanical damage and should be connected to the workpiece and a suitable earth terminal by bolted lugs or secure screw clamps.

**Note:** Some manufacturers may recommend earthing as one of their measures to reduce the electrical interference. This is not a safety related measure, but the manufacturer's advice should be followed.

**23.6.5** If an alternative method of protecting against welding transformer insulation failure is used, the hazards caused by stray welding currents can be avoided by not earthing the workpiece or the welding output circuit. Self-contained engine-driven welding sets, and welding power sources which comply with the standards listed in Annex 23.2 do not need the workpiece to be earthed. It should be noted, however that other equipment connected to the workpiece may require earthing for safe operation (e.g. welding sets not constructed to one of the standards listed in Annex 23.2 or electrical pre-heating systems).

**23.6.6** To avoid voltage drop in transmission, the lead and return cables should be of the minimum length practicable for the job and of an appropriate cross-section.

**23.6.7** Cables should be inspected before use; if the insulation is impaired or conductivity reduced, they should not be used.
23.6.8 Cable connectors should be fully insulated when connected, and so designed and installed that current carrying parts are adequately recessed when disconnected.

23.6.9 Electrode holders should be fully insulated so that no live part of the holder is exposed to touch, and, where practicable, should be fitted with guards to prevent accidental contact with live electrodes and as protection from sparks and splashes of weld metal.

23.6.10 A local switching arrangement or other suitable means should be provided for rapidly cutting off current from the electrode should the operator get into difficulties and also for isolating the holder when electrodes are changed.

23.6.11 The direct current output from power sources should not exceed 70 volts open circuit. The ripple on the output from the power source should not exceed the values of the table below. The ripple magnitudes are expressed as percentages of the DC, and the ripple peak is that with the same polarity as the DC.

<table>
<thead>
<tr>
<th>Ripple Frequency, Hz</th>
<th>50/60</th>
<th>300</th>
<th>1200</th>
<th>2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. RMS O/C voltage ripple, (%)</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Max. peak O/C voltage ripple, (%)</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>

23.6.12 The conditions in the table 23.6.11 are normally met by DC generators incorporating commutators and by rectifier power sources having a 3 phase bridge rectifier operating from a 3 phase 50/60 Hz supply. Rectifier power sources should not be operated from a power supply of less than 50 Hz.

23.6.13 Should it be necessary to use a power source with a DC output having a ripple magnitude in excess of those stated in the table, for example a single phase rectifier power source, then a voltage limiting device should be
incorporated in the power source to ensure that the idling voltage does not exceed 42V.

23.7 Precautions to be taken during electric arc welding

23.7.1 In addition to the protective clothing specified in 23.3.2 the welding operator should wear non-conducting safety footwear complying with BS 7193. Clothing should be kept as dry as possible as some protection against electric shock, it is particularly important that gloves should be dry as wet leather is a good conductor.

23.7.2 An assistant should be in continuous attendance during welding operations, who should be alert to the risk of accidental shock to the welder, and ready to cut off power instantly, raise the alarm and provide artificial respiration without delay. It may be desirable to have a second assistant if the work is to be carried out in difficult conditions.

23.7.3 Where persons other than the operator are likely to be exposed to harmful radiation or sparks from electric arc welding, they should be protected by screens or other effective means.

23.7.4 In restricted spaces, where the operator may be in close contact with the ship's structure or is likely to make contact in the course of ordinary movements, protection should be provided by dry insulating mats or boards.

23.7.5 There are increased risks of electric shock to the operator if welding is done in hot or humid conditions; body sweat and damp clothing greatly reduce body resistance. Under such conditions, the operation should be deferred until such time that an adequate level of safety can be achieved.

23.7.6 In no circumstances should a welder work while standing in water or with any part of their body immersed.

23.7.7 The electrode holder should be isolated from the current supply.
before a used electrode is removed and before a new electrode is inserted. This precaution is necessary because some electrode coatings have extremely low resistance. Even a flux coating which is normally insulating can become damp from sweating hands and thus potentially dangerous.

23.7.8 When the welding operation is completed or temporarily suspended, the electrode should be removed from the holder.

23.7.9 Hot electrode ends should be ejected into a suitable container; they should not be handled with bare hands.

23.7.10 Spare electrodes should be kept dry in their container until required for use.

23.8 Compressed gas cylinders

23.8.1 Compressed gas cylinders should always be handled with care, whether full or empty. They should be properly secured and kept upright. The cylinders should be so secured as to be capable of quick and easy release, for example, in the case of fire. If available, cylinder trolleys should be used to transport cylinders from one place to another.

23.8.2 The protective caps over the valve should be screwed in place when the cylinders are not in use or are being moved. Valves should be closed when the cylinder is empty.

23.8.3 Where two or more cylinders of either oxygen or a fuel gas (such as acetylene) are carried the oxygen and the fuel gas should be stowed in separate, well-ventilated compartments that are not subject to extremes of temperature. The space in which acetylene or other fuel gas cylinders are stowed should have no electrical fittings or other sources of ignition and prominent and permanent "NO SMOKING" signs should be displayed in the entrance and within the space. Empty cylinders should be segregated from the full ones and so marked.
23.8.4 The following special precautions need to be taken in the case of cylinders of oxygen and acetylene or other fuel gases:
(a) cylinder valves, controls and associated fittings should be kept free from oil, grease and paint, controls should not be operated with oily hands;
(b) gas should not be taken from such cylinders unless the correct pressure reducing regulator has been attached to the cylinder outlet valve;
(c) cylinders found to have leaks that cannot be stopped by closing the outlet valve should be taken to the open deck away from any sources of heat or ignition and slowly discharged to the atmosphere.

23.8.5 Identifying marks on cylinders are set out in Section 28.5.

23.9 Gas Welding and Cutting

23.9.1 While this section deals almost exclusively with oxygen and acetylene, other fuel gases may be used and similar precautions should be taken.

23.9.2 The pressure of oxygen used for welding should always be high enough to prevent acetylene flowing back into the oxygen line.

23.9.3 Acetylene should not be used for welding at a pressure exceeding 1 atmosphere gauge, as it is liable to explode, even in the absence of air, when under excessive pressure.

23.9.4 Non-return valves should be fitted adjacent to the torch in the oxygen and acetylene supply lines.

23.9.5 Flame arrestors should be provided in the oxygen and acetylene supply lines and will usually be fitted at the low pressure side of regulators although they may be duplicated at the torch.
23.9.6 Should a backfire occur (i.e. the flame returns into the blowpipe and continues burning in the neck or mixing chamber) the recommended first action is to close the oxygen valve on the blowpipe - to prevent internal burning - followed immediately by shutting off the fuel gas at the blowpipe valve. Items 3-6 of the shutting down procedure in Annex 23.1 may then be followed. When the cause of the backfire has been discovered, the fault rectified and the blowpipe cooled down, the blowpipe may be re-lit.

23.9.7 If there is a flashback into the hose and equipment or a hose fire or explosion, or a fire at the regulator connections or gas supply outlet points, the first action should be to isolate the oxygen and fuel gas supplies at the cylinder valves or gas supply outlet points - but only if this can be done safely. Further action should follow in accordance with the vessel’s fire drill requirements.

23.9.8 A watch should be kept on the acetylene cylinders and should one become hot it should be immediately removed to the open, kept cool either by immersion or with copious amounts of water and the cylinder stop valve opened fully. If this cannot be done with safety, consideration should be given to jettisoning the cylinder overboard. Any acetylene cylinder suspected of overheating should be treated with care because an impact could set off an internal ignition which might cause an explosion.

23.9.9 Only acetylene cylinders of approximately equal pressures should be coupled.

23.9.10 In fixed installations, manifolds should be clearly marked with the gas they contain.

23.9.11 Manifold hose connections including inlet and outlet connections should be such that the hose cannot be interchanged between fuel gases and oxygen manifolds and headers.
23.9.12 Only those hoses specially designed for welding and cutting operations should be used to connect an oxy-acetylene blowpipe to gas outlets.

23.9.13 Any length of hose in which a flashback has occurred should be discarded.

23.9.14 The connections between hose and blowpipe, and between hoses, should be securely fixed with fittings which comply with Standard EN 1256. [More detailed guidance on hose connections and assemblies is in Annex 23.3].

23.9.15 Hoses should be arranged so that they are not likely to become kinked or tangled or be tripped over, cut or otherwise damaged by moving objects or falling metal slag, sparks etc.; a sudden jerk or pull on the hose is liable to pull the blowpipe out of the operator's hands or cause a cylinder to fall or a hose connection to fail. Hoses in passageways should be covered to avoid them becoming a tripping hazard.

23.9.16 Soapy water only should be used for testing leaks in hoses. If there are leaks which cannot easily be stopped, the gas supply should be isolated and the leaking components taken out of service, replaced or repaired. If the leak is at a cylinder valve or pressure regulator ("bull-nose") connection, the cylinder should be removed to a safe place in the open air If it is a fuel-gas cylinder it should be taken well clear of any source of ignition.

23.9.17 Excessive force should never be used on cylinder valve spindles or hexagon nuts of regulator connections in an attempt to stop a leak Neither are sealing tape nor other jointing materials recommended for use in an attempt to prevent leaks between metal-metal surfaces that are designed to be gas tight With an oxygen cylinder this could result in initiation of a metal-oxygen fire.
23.9.18 Blowpipes should be lit with a special friction igniter, stationary pilot flame or other safe means.

23.9.19 Should a blowpipe-tip opening become clogged, it should be cleaned only with the tools especially designed for that purpose.

23.9.20 When a blowpipe is to be changed the gases should be shut off at the pressure-reducing regulators.

23.9.21 To prevent a build-up of dangerous concentrations of gas or fumes during a temporary stoppage or after completion of the work, supply valves on gas cylinders and gas mains should be securely closed and blowpipes, hoses and moveable pipes should be removed to lockers that open on to the open deck.

23.9.22 Oxygen should never be used to ventilate, cool or blow dust off clothing (see also Section 20.7).

23.10 Further information

23.10.1 Detailed advice on the selection and standards for equipment used in hot work is contained in the HSE guidance note “The Safe Use of Compressed Gases in Welding, Flame Cutting and Allied Processes” (HS (G) 139).
ANNEX 23.1
HOT WORK. LIGHTING UP AND SHUTTING DOWN PROCEDURES

These procedures are appropriate for oxy-fuel gas equipment and, with little modification, also for air-aspirated blowpipes.

Lighting up
1. Ensure that the pre-use equipment checks have been made.
2. Check that the outlets of adjustable pressure regulators are closed, i.e. that the pressure-adjusting screw of the regulator is in the fully unwound (anti-clockwise) position.
3. Check that the blowpipe valves are closed.
4. Slowly open the cylinder valves (or gas supply point isolation valves) - to avoid sudden pressurisation of any equipment.
5. Adjust pressure regulators to the correct outlet pressures. Or check that the pressures in distribution pipework are suitable for the equipment and process.
6. Open the oxygen valve at the blowpipe and allow the flow of oxygen to purge* air out of oxygen hose and equipment. If necessary reset the pressure regulator to ensure correct working oxygen pressure.
7. Close the oxygen valve at the blowpipe.
8. Open the fuel gas valve at the blowpipe and allow the gas flow to purge* air or oxygen from the fuel gas hose and equipment. If necessary reset the pressure regulator to ensure correct working fuel gas pressure.
9. Light the fuel gas immediately, and preferably with a spark lighter
10. Open the oxygen valve at the blowpipe and adjust it and the fuel gas valve to give the correct flame setting.

* Purging is important it removes flammable gas mixtures from the hoses and equipment which could result in explosions and fires when the blowpipe is first lit. It should be carried out in a well-ventilated area, and it may take from several seconds to a minute or more depending on the length of the hose and gas flow rates.
Shutting down

1. Close the fuel gas valve at the blowpipe.
2. Immediately close the oxygen valve at the blowpipe.
3. Close the cylinder valves or gas supply point isolation valves for both oxygen and fuel gas.
4. Close the outlets of adjustable pressure regulators by winding out the pressure-adjusting screws.
5. Open both blowpipe valves to vent the pressures the equipment.
   Close the blowpipe valves.
* Step 3 is not necessary when the equipment is to be used again in the immediate future.
## ANNEX 23.2
### EARTHING OF ARC WELDING SYSTEMS
#### TRANSFORMER CASING

<table>
<thead>
<tr>
<th>Earthed</th>
<th>Class 1 Appliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not earthed</td>
<td>Class 11 Appliance</td>
</tr>
</tbody>
</table>

#### TRANSFORMER SECONDARY

<table>
<thead>
<tr>
<th>Earthed</th>
<th>This is an obsolete type of equipment and should be taken out of service. Failure of the weld return connection might not be noticed, and damage to other earthed metallic paths could result.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated</td>
<td>The absence of a weld return conductor will prevent welding being carried out. However a failure of isolation within the welding set could cause the work item to become live. For this reason the workpiece should be earthed.</td>
</tr>
<tr>
<td>Isolated with double or reinforced insulation</td>
<td>This is the most recent standard to which equipment is being built. Because of the strengthened insulation, the workpiece need not be earthed. Furthermore, to prevent the possibility of stray weld return currents in the supply system earth conductors, it is recommended that the workpiece is not earthed. Such welding power sources may be identified by the additional symbol if made to the relevant parts of BS 638 (i.e. Parts 1, 2 or 3) and complying with the requirements of British Standard Code of Practice 7418: 1991, or they will be marked with the standards numbers EN 50.060, EN 60.974 or IEC974.</td>
</tr>
</tbody>
</table>
ANNEX 23.3
HOT WORK. HOSES AND CONNECTIONS/ASSEMBLIES

Hoses
Rubber hoses complying with Standard EN 559 are recommended for use in gas welding and cutting processes, which are often carried out in aggressive working environments. Hoses satisfying these standards are re-inforced with an outer protective cover designed to be resistant to hot surfaces, molten slag or sparks, and made with linings that resist the action of hydrocarbons (for LPG hose) acetone or dimethyl formamide (for acetylene hoses) and ignition in an atmosphere of oxygen (for all services). Burst pressure is 60 bar g and maximum working pressure 20 bar g.

Hoses meeting the requirements of BS 3212 or equivalent are recommended for LPG vapour-phase applications other than welding or cutting. Hose made of thermoplastics materials is not generally suitable for welding and cutting, because it does not have the same resistance to hot surfaces or hot particles as reinforced rubber hose.

Connections
Hose connections (comprising hose nipples and "bull-nose" hose connections) comply with EN 1256, ISO 3253 or equivalent Thread sizes specified in these standards are based on Whitworth dimensions which are generally used in this field in many countries. Right-hand threads are used for oxygen and non-combustible gases; left-hand threads are used for fuel gases, with the hexagon nuts on their union connections notched to aid identification. Hose connections may also be made with a quick-action coupling a male probe fitted to the end of the hose and a female connector with a self-sealing valve usually fitted to a fixed piece of equipment or gas supply outlet point. The probe is pushed into the female fitting where it locks in position and automatically open the internal valve. Connections of this type are simple and quick to operate and there is no need to use a spanner to tighten any nuts.
Problems are that the male probe may become damaged (e.g. from being dragged along the ground or over-use and cause the coupling to leak, and there is a possibility of connecting the hose to the wrong gas outlet. Both should be avoided if couplings comply with Standard EN 561 or with ISO 7289. These require hard material of construction to be used for the probes, and their design dimensions are intended to prevent interchangeability between oxygen and fuel gas connections.

**Hose assemblies**

Hose lengths are usually supplied in the UK as pre-assembled units complete with connection fittings crimped to the ends of the hose. Hose and hose nipple dimensions are matched by the supplier to ensure a good fit. The recommended standard for hose assemblies is EN 1256, which specifies requirements for leak tightness and resistance to axial loading. Worm drive or similar clips are not recommended for fastening hoses.
24.1 Introduction

24.1.1 Based on the findings of the risk assessment, appropriate control measures should be put into place to protect those who may be affected. This chapter highlights some areas which may require attention in respect of painting.

24.2 General

24.2.1 Paints may contain toxic or irritant substances, and the solvents may give rise to flammable and potentially explosive vapours, which may also be toxic. Personnel using such paints should be warned of the particular risks arising from their use. Paints containing organic pesticides can be particularly dangerous. If the manufacturer's instructions are not given on the container, information should be obtained at the time of supply about any special hazards, and also whether special methods of application should be followed. Such advice should be readily available at the time of use but the following precautions should always be taken.

24.3 Preparation and Precautions

24.3.1 Painted surfaces should always be rubbed down wet to reduce dust from the old paint, which may be toxic if inhaled. Where the dust is known to contain lead, other dust treating methods should be used. Dust masks should be worn as protection against other dusts.

24.3.2 If the surface to be rubbed down is known to contain lead, then methods that do not create dust should be adopted. It is safer to avoid or minimise dust creation than to try to clean up the dust afterwards. Sanding or abrasive blasting should be avoided. Lead based paint should never be burnt off as fumes will contain metallic lead in a readily absorbed form.
24.3.3 Rust removers are adds and contact with unprotected skin should be avoided. Eye protection should be worn against splashes (see section 4.7). If painting aloft or otherwise near ropes, care should be taken to avoid splashes on ropes, safety harness, lines etc. (see section 20.9 on the effect of such contamination on ropes).

24.3.4 Interior and enclosed spaces should be well ventilated, both while painting is in progress and until the paint has dried.

24.3.5 There should be no smoking or use of naked lights in interior spaces during painting or until the paint has dried hard. Some vapours even in low concentrations may decompose into more harmful substances when passing through burning tobacco.

24.3.6 When painting is done in the vicinity of machinery or from an overhead crane gantry, the power supply should be isolated and the machine immobilised in such a way that it cannot be moved or started up inadvertently. Appropriate warning notices should be posted (see 22.12.7). Close-fitting clothing should be worn.

24.4 Use of Paint Spraying Equipment

24.4.1 As there are many different types of paint spraying equipment in use, operatives should comply with the manufacturer's instructions for use.

24.4.2 Airless spray-painting equipment is particularly hazardous since the paint is ejected at a very high pressure and can penetrate the skin or cause serious eye injuries. Spray should not be allowed to come into contact with the face or unprotected skin.

24.4.3 Suitable protective clothing such as a combination suit, gloves, cloth hood, and eye protection should be worn during spraying.
24.4.4 Paints containing lead, mercury or similarly toxic compounds should not be sprayed in interiors.

24.4.5 A suitable respirator should be worn according to the nature of the paint being sprayed. In exceptional circumstances it may be necessary to use breathing apparatus (see Section 4.8).

24.4.6 If a spray nozzle clogs, the trigger of the gun should be locked in a closed position before any attempt is made to clear the blockage.

24.4.7 Before a blocked spray nozzle is removed or any other dismantling is attempted, pressure should be relieved from the system.

24.4.8 When blowing through a reversible nozzle to remove a blockage, all parts of the body should be kept clear of the nozzle mouth.

24.4.9 The pressure in the system should not exceed the recommended working pressure of the hose. The system should be regularly inspected for defects.

24.4.10 As an additional precaution against the hazards of a hose bursting, a loose sleeve, for example a length of 2 to 3 meters (6 to 10 feet) of old air hose, may be slipped over that portion of the line adjacent to the gun and paint container.
CHAPTER 25
ANCHORING, MOORING AND TOWING OPERATIONS

25.1 Introduction

25.1.1 Based on the findings of the risk assessment, appropriate control measures should be put into place to protect those who may be affected. This chapter highlights some areas which may require attention in respect of anchoring, mooring and towing operations. It is particularly important that the risk assessment considers the consequences of the failure of any element of the equipment.

25.2 Anchoring and Weighing Anchor

25.2.1 Before using an anchor a competent seafarer should check that the brakes are securely on and then clear voyage securing devices. A responsible person should be in charge of the anchoring team, with an adequate communications system with the vessel's bridge. The anchoring party should wear appropriate safety clothing - safety helmets, safety shoes and goggles as a minimum protection from injury from dirt, rust particles and debris which may be thrown off during the operation. Wherever possible, they should stand aft of the windlass.

25.2.2 Where the means of communication between bridge and anchoring party is by portable radio, the identification of the ship should be clear to avoid misinterpretation of instructions from other users of such equipment.

25.2.3 Before anchors are let go, a check should be made that no small craft or other obstacle is under the bow. As a safety precaution it is recommended that the anchor is 'walked out' clear of the pipe before letting go. For very large ships with heavy anchors and cables, the anchor should be
walked out all the way to avoid excessive strain on the brakes (and on the bitter end if the brakes fail to stop the anchor and chain).

**25.2.4** Where the anchor is let go from the stowed position, if upon release of the brake, the anchor does not run, personnel should NOT attempt to shake the cable, but the brake should be re-applied, the windlass placed in gear, and the anchor walked out clear prior to release.

**25.2.5** Cable should stow automatically. If, for any reason, it is necessary for personnel to enter the cable locker they should stand in a protected position and, as far as possible, have constant communication with the windlass operator:

**25.2.6** Anchors housed and not required should be properly secured to prevent accidental release.

**25.3 Making Fast and Casting Off**

**25.3.1** During mooring and un-mooring operations a sufficient number of personnel should always be available at each end of the vessel to ensure a safe operation. A responsible officer should be in charge of each of the mooring parties, and a suitable means of communication between the responsible officers and the vessel's bridge team should be established. If this should involve use of portable radio, then the ship should be clearly identified by name to prevent misinterpretation. All personnel involved in such operations should wear suitable protective clothing (see Chapter 4).

**25.3.2** Vessels' heaving lines should be constructed with a 'monkey's fist' at one end. To prevent personal injury, the 'fist' should be made only with rope and should not contain added weighting material.

**25.3.3** Areas where mooring operations are to be undertaken should be clutter free as far as possible. Decks should have anti-slip surfaces provided by fixed treads or anti-slip paint coating, and the whole working area should be...
adequately lit for operations undertaken during periods of darkness.

25.3.4 All equipment used in mooring operations should be regularly inspected for defects. Any defects found should be corrected as soon as possible. Particular attention should be paid to the risk of oil leaks from winches, and surfaces off fairleads, bollards, bitts and drum ends should be clean and in good condition. Rollers and fairleads should turn smoothly and a visual check be made that corrosion has not weakened them.

25.3.5 Mooring ropes, wines and stoppers that are to be used in the operation should be in good condition. Ropes should be frequently inspected for both external wear and wear between strands. Wires should be regularly treated with suitable lubricants (see section 21.2.28) and inspected for deterioration internally and broken strands externally. Splices in both ropes and wires should be inspected regularly to check they are intact. Where wire rope is joined to fibre rope, a thimble or other device should be inserted in the eye of the fibre rope. Both wire and fibre rope should have the same direction of lay.

25.3.6 Ropes and wires which are stowed on reels should not be used directly from stowage, but should be run off and flaked out on deck in a clear and safe manner, ensuring sufficient slack to cover all contingencies. If there is doubt of the amount required, then the complete reel should be run off.

25.3.7 Careful thought should be given to the layout of moorings, so that leads are those most suited without creating sharp angles and ropes and wires are not fed through the same leads or bollards. Pre-planning of such operations is recommended.

25.3.8 Personnel should not in any circumstances stand in a bight of rope or wire. Operation of winches should preferably be undertaken by competent personnel to ensure that excessive loads do not arise on moorings.
25.3.9 When moorings are under strain all personnel in the vicinity should remain in positions of safely, i.e. avoiding all 'snap-back' zones. Immediate action should be taken to reduce the load should any part of the system appear to be under excessive strain. Care is needed so that ropes or wires will not jam when they come under strain, so that if necessary they can quickly be slackened off.

25.3.10 Where moorings are to be heaved on a drum end, one person should be stationed at the drum end, backed up by a second person backing and coiling down the slack. In most circumstances three turns on the drum end are sufficient to undertake a successful operation. A wire on a drum end should never be used as a check wire.

25.3.11 A wire should never be led across a fibre rope on a bollard. Wires and ropes should be kept in separate fairleads or bollards.

25.3.12 When stoppering off moorings the following applies:
(a) Natural fibre rope should be stoppered with natural fibre.
(b) Man made fibre rope should be stoppered with man-made fibre stopper (but not polyamide).
(c) The 'West Country' method (double and reverse stoppering) is preferable for ropes.
(d) Wire moorings should be stoppered with chain, using two half hitches in the form of a cow hitch, suitably spaced with the tail backed up against the lay of wire, to ensure that the chain neither jams nor opens up the lay of the wire.

25.4 Mooring to buoys

25.4.1 Where mooring to buoys is undertaken from a ship's launch or boat, personnel engaged in the operation should wear lifejackets and a lifebuoy with attached lifeline should be kept readily available in the boat.
25.4.2 Means should be provided to enable a person who has fallen into the water to climb back on board the launch or boat. If a boarding ladder with flexible sides is used, it should be weighted so that the lower rungs remain below the surface.

25.4.3 Where mooring to buoys is undertaken from the ship, a lifebuoy with attached line of sufficient length should be available for immediate use.

25.4.4 When slip wires are used for mooring to buoys or dolphins, the eyes of the wires should never be put over the bitts, as at the time of unmooring it may not be possible to release the load sufficiently to lift the eye clear. To prevent accidental slippage of the wire eye(s) over the bitts or other obstruction the eyes should be seized, partially closing the eye.

25.5 Towing

25.5.1 Equipment used for towing should be adequately maintained and inspected before use, as during towing operations excessive loads may be applied to ropes, wires, fairleads, bitts and connections.

25.5.2 Prior to towing operations being undertaken, the master should establish suitable means of communication, exchange relevant information (e.g., speed of vessel), and agree a plan for the tow with the tug master.

25.5.3 All personnel involved should be adequately briefed in their duties and in safety precautions to be taken. They should be equipped with personal protective equipment including safety helmets and safety shoes.

25.5.4 Personnel should wherever possible agree with the tug crew the area where the heaving line is to be thrown to, to allow them to move clear.

25.5.5 Once the tow is connected, non-essential personnel should keep clear of the operational area. If anyone is required to remain in this area or to
attend to towing gear during the towing operation, they should take extreme
care to keep clear of bights of wine or rope and the whiplash area should a
line break. Exposure time should be kept to a minimum.

25.5.6 During operations, communications should be maintained between:-
(a) the towing vessel and both the bridge team and the foredeck of the vessel
under tow; and
(b) the tow party and the bridge team.
In all communications clear identification of the parties communicating should
be used to prevent misunderstandings. The tug master should be kept
informed of engine movements, proposed use of thrusts etc.

25.5.7 When letting go of a tow line, personnel should keep well clear of the
tow eye, which should be lowered under the control of a messenger to reduce
the risk of injury to those involved in the towing operation.

25.5.8 Further recommendations on towing are contained in Merchant
Shipping Notices.
CHAPTER 26
HATCH COVERS AND ACCESS LIDS

26.1 Introduction

26.1.1 Based on the findings of the risk assessment, appropriate control measures should be put into place to protect those who may be affected. This chapter highlights some areas which may require attention in respect of hatch covers and access lids.

26.2 General

26.2.1 Information about the regulations governing the use of hatches is given in section 7.4.

26.2.2 Before vessel departure, weather deck hatch covers should be secured in the correct closed position. Whilst the vessel is at sea they should be regularly inspected to ensure that integrity is being maintained.

26.2.3 All hatch covers should be properly maintained. Defective or damaged covers should be replaced/repaird as soon as possible. All covers and beams should only be used if they are a good fit and overlap their end supports to an extent which is adequate but not excessive.

26.2.4 All personnel involved with the handling and/or operation of hatch covers must be properly instructed in their handling and operation. All stages of opening or closing hatches should be supervised by a responsible person. When hatches are open, the area around the opening and in the hatchways should be appropriately illuminated and guard-rails erected. Guard-rails should be tight with stanchions secured in position, and properly maintained. No hatch cover should be replaced contrary to information showing the correct replacement position.
26.2.5 Where lifting appliances are used, they should be attached to hatch covers from a safe position and without personnel being exposed to the danger of falling or being trapped.

26.2.6 No loads should be placed over nor work take place on, any section of hatch cover unless it is known that the cover is properly secured and can safely support the load.

26.2.7 Partly opened unguarded hatches should never be covered with tarpaulins; this would present a serious hazard for any person walking across the hatch.

26.2.8 Hatch covers should not be used for any other purpose.

26.3 Mechanical hatch covers

26.3.1 The manufacturer's instructions for the safe operation, inspection, maintenance and repair of the type of mechanical hatch cover fitted should always be followed.

26.3.2 During operations, personnel should keep clear of the hatches and the cover stowage positions. The area should be kept clear of all items which might foul the covers or the handling equipment.

26.3.3 Special attention should be paid to the trim of the vessel when handling mechanical covers. The hatch locking pins or preventers of rolling hatch covers should not be removed until a check wire is fast to prevent premature rolling when the tracking is not horizontal.

26.3.4 Hatch wheels should be kept greased and free from dirt and the coaming runways and the drainage channels kept clean. The rubber sealing joints should be properly secured and be in good condition so as to provide a proper weathertight seal.
26.3.5 All locking and tightening devices should be secured in place on a closed hatch at all times when at sea. Securing cleats should be kept greased. Cleats, top-wedges and other tightening devices should be checked regularly whilst at sea.

26.3.6 Hatch covers should be properly secured immediately after closing or opening. They should be secured in the open position with chain preventers or by other suitable means. No one should climb on to any hatch cover unless it is properly secured.

26.4 Non-mechanical hatch covers and beams

26.4.1 Each non-mechanical hatchway should be provided with an appropriate number of properly fitting beams and hatch covers, pontoons or slab hatches adequately marked to show the correct replacement position, and with an adequate number of properly fitting tarpaulins, batten bars, side wedges and locking bars so that the hatch will remain secure and weathertight for all weather conditions.

26.4.2 Unless hatches are fitted with coamings to a height of at least 760 mm (30 inches) they should be securely covered or fenced to a height of 1 metre (39 inches) when not in use for the passage of cargo.

26.4.3 Manually handled hatch covers should be capable of being easily lifted by two people. Such hatch covers should be of adequate thickness and strength and provided with hand grips. Wooden hatch boards should be strengthened by steel bands at each end. One person should not attempt to handle hatch covers unaided unless the covers are designed for single-handed operation.

26.4.4 Hatch boards, hatch beams, pontoon hatches, hatch slabs and tarpaulins should be handled with care and properly stowed, stacked and secured so as not to endanger or impede the normal running of the vessel. Hatch boards should be removed working from the centre towards the sides, and replaced
from the sides towards the centre. Personnel hauling tarpaulins should walk forwards and NOT backwards so they can see where they are walking.

26.4.5 A derrick or crane should be used to handle beams. Pontoons or slab hatches should be positioned directly over them to lessen the risk of violent swinging once the weight has been taken.

26.4.6 Appropriate gear of adequate strength should be specially provided for the lifting of the beams, pontoons and slab hatches. Slings should be of adequate length, secured against accidental dislodgement while in use and fitted with control lanyards. The angle between arms of slings at the lifting point should not exceed 120°, in order to avoid undue stress. The winch or crane should be operated by a competent person under the direction of a ship’s officer or other experienced person.

26.4.7 Beams and hatch covers remaining in position in a partly opened hatchway should be securely pinned, lashed, bolted or otherwise properly secured against accidental dislodgement.

26.4.8 Hatch covers and beams should not be removed or replaced until a check has been made that all persons are out of the hold or clear of the hatchway. Immediately before beams are to be removed, a check should be made that pins or other locking devices have been freed.

26.4.9 No one should walk out on a beam for any purpose.

26.4.10 Hatch covers should not be used in the construction of deck or cargo stages or have loads placed on them liable to damage them. Loads should not be placed on hatch coverings without the authority of a ship’s officer.

26.5 Steel-hinged inspection/access lids

26.5.1 Inspection/access hatch lids should be constructed of steel or similar material, and hinged so they can be easily and safely opened or closed. Those
on weather decks should be seated on watertight rubber gaskets and secured weathertight by adequate dogs, side cleats or equivalent tightening devices.

26.5.2 When not secured, inspection/access hatch lids should be capable of being easily and safely opened from above and, if practicable, from below.

26.5.3 Adequate hand grips should be provided in accessible positions to lift inspection/access hatches by hand without straining or endangering personnel.

26.5.4 Heavy or inaccessible hatch lids should be fitted with counterweights so that they can easily be opened by one or two persons. Where a counterweight cannot be fitted due to inaccessibility, the hatch lids should be supplied with a purchase or pulley with eye-plates or ringbolts fitted in appropriate positions so that the hatch can be opened and closed without straining or endangering personnel.

26.5.5 The hatch lids when open should be easily and safely secured against movement or accidental closing. Adequate steel hooks or other means should be provided.

26.6 Access to Holds/Cargo spaces

26.6.1 Entry to holds/cargo spaces should only be undertaken on the authority of a responsible ships officer who should ensure prior to granting authority that the space has been adequately ventilated and, where appropriate, tested for noxious gases/oxygen content (see Chapter 17).

26.6.2 Entry should be made where at all possible through the permanent means of access. Where this is not possible, portable ladders may be used (see section 15.3). When necessary, lifelines and safety harness should be available and used.
27.1 General Advice

27.1.1 Many substances found on ships are capable of damaging the health and safety of those exposed to them. They include not only substances containing hazard warning labels (e.g. on dangerous goods cargoes and ships’ stores) but also, for example, a range of dusts, fumes and fungal spores from goods, plant or activities aboard ship.

27.1.2 The employer's risk assessment will identify where personnel are working in the presence of substances hazardous to health or safety, and evaluate any risks from exposure (see Chapter 1). Appropriate measures should be taken to remove, control or minimise the risk (see section 27.2).

27.1.3 Employers should instruct and inform personnel so that they know and understand the risks arising from their work, the precautions to be taken and the results of any monitoring of exposure.

27.1.4 The risk assessment will also provide information to determine whether health surveillance is appropriate (see Chapter 2).

27.1.5 As an aid to the identification of hazards and the assessment of risks from dangerous goods reference may be made to the International Maritime Dangerous Goods Code or to the Chemical data sheets contained in the Tanker Safety Guides (Gas and Chemical) issued by the International Chamber of Shipping. Information concerning hazardous cargoes carried in bulk should be available where applicable to allow the assessment to be made.

27.1.6 In the case of ship’s stores etc. reference should be made to the manufacturer’s instructions and data sheets, which may be supplied with the
goods. Reference may also be made where appropriate to the series of publications issued by the Health and Safety Executive under the Control of Substances Hazardous to Health Regulations (see Bibliography).

27.2 Prevention or control of exposure:

27.2.1 The first consideration should always be to prevent exposure by removing the substance, e.g. by substituting a less harmful one.

27.2.2 Where this is not reasonably practicable, prevention or control of exposure may be achieved by any combination of the following means:

(a) total or partial enclosure of the process and handling systems;
(b) use of plant, processes and systems of work which minimise the generation of, or suppress and contain, spills, leaks, dust fumes and vapours of hazardous substances;
(c) the limitation of the quantities of a substance at the place of work;
(d) keeping the number of persons who might be exposed to a substance to a minimum, and reducing the period of exposure;
(e) prohibiting eating, drinking and smoking in areas that may be contaminated by the substance;
(f) hygiene measures, including providing adequate washing and laundring facilities and regular cleaning of walls/bulkheads and other surfaces;
(g) the designation of those areas which may be contaminated and the use of suitable and sufficient warning signs; and
(h) the safe storage, handling and disposal of hazardous substances and use of closed and dearly labelled containers.

27.2.3 These measures should be applied to reduce the risk to personnel to the minimum, but where they do not adequately control the risk to health, personal protective equipment should be provided in addition.

27.2.4 Employers should take reasonable steps to ensure that any control measures are properly used and maintained. Where appropriate, exposure levels should be monitored and recorded.
27.2.5 Personnel should comply fully with the control measures in force.

27.2.6 For certain substances very specific control measures apply; e.g. asbestos, benzene. In cases where failure of the control measures could result in risk to health and safety, or where their adequacy or efficiency is in doubt, the exposure of personnel should be monitored and a record kept for future reference.

27.3 Asbestos dust

27.3.1 All types of asbestos have a fibrous structure and can produce harmful dust if the surface exposed to the air is damaged or disturbed. The danger is not immediately obvious because the fibres which can damage the lungs and can cause lung cancer are too small to be seen with the naked eye. Asbestos which is in good condition is unlikely to release fibres, but where the material is damaged or deteriorating, or work is undertaken on it, airborne fibres can be released. Dry asbestos is much more likely to produce dust than asbestos that is thoroughly wet or oil-soaked. Asbestos is particularly likely to occur on older vessels in insulation and panelling, but certain asbestos compounds may also be found elsewhere and on other vessels in machinery components such as gaskets and brake linings.

27.3.2 Shipowners should advise masters of any location where asbestos is known or believed to be present on their ship. Masters and/or safety officers should keep a written record of this information and should also note any other position where asbestos is suspected, but they should not probe or disturb any suspect substance. Crew members who work regularly near asbestos or a substance likely to contain it should be warned of the need for caution and should report any deterioration in its condition such as cracking or flaking.

27.3.3 The condition of old asbestos may deteriorate and where reasonably practicable consideration should be given to its removal. This
should be carried out in port and a specialist removal contractor should be used, to ensure adequate protective procedures. Where the port is in the UK and the work involves asbestos insulation or asbestos coating it is usually necessary for the contractor to hold a licence issued by the Health and Safety Executive. If such work is carried out outside the UK the contractor should be of equivalent competence.

27.3.4 If it is essential to carry out emergency repairs liable to create asbestos dust while the ship is at sea strict precautions, including the use of the appropriate protective clothing and respiratory protective equipment, should be observed in accordance with the guidance given in the relevant Merchant Shipping Notice. See also the general guidance on the assessment and control of risks from hazardous substances in Section 12.6 of this Code.

27.3.5 Guidance on precautions to be taken when asbestos is carried as a cargo is also included in a Merchant Shipping Notice.

27.4 Dangerous goods

27.4.1 All dangerous goods and substances carried as cargo on ships have to be classified, packaged and labelled for transport in accordance with Merchant Shipping Regulations.

27.4.2 Examples of the labels to be affixed to packages and containers of dangerous goods are given in the International Maritime Dangerous Goods (IMDG) Code. These depict by colour name and pictogram the particular dangers of that substance (flammability, toxicity, corrosiveness etc.).

27.5 Use of Chemical agents

27.5.1 A chemical from an unlabelled package or receptacle should never be used unless its identity has been positively established. In addition to the transport labelling referred to above, packaged substances supplied in Europe may also display similar or additional labelling for supply and use for compliance with the European Dangerous Preparations Directive (DPD).
27.5.2 Chemicals should always be handled with the utmost care. Eyes and skin should be protected from accidental exposure or contact.

27.5.3 Manufacturers' or suppliers' advice on the correct use of the chemicals should always be followed. Some cleaning agents, even though used domestically, for example, caustic soda and bleaches, may burn the skin.

27.5.4 Chemicals should not be mixed unless it is known that dangerous reactions will not be caused.

27.6 Dry-cleaning operations

27.6.1 The principal hazard presented by a dry-cleaning solvent is that it is highly volatile, producing a vapour which is anaesthetic. Effective mechanical ventilation should therefore be provided in any compartment containing dry-cleaning plant. Smoking should be prohibited in compartments when the solvent is present.

27.6.2 Dry cleaning solvent is also a potential cause of skin damage, and suitable personal protective equipment should be worn.

27.6.3 A responsible person should be appointed to take overall responsibility for the security and operation of the dry-cleaning plant, and access should be controlled.

27.7 Safe use of pesticides

27.7.1 The following guidance should be read in conjunction with Merchant Shipping Notice MSN No. M1718.

27.7.2 Where pesticides are used in the cargo spaces of ships or cargo units, safety procedures should be in accordance with the IMO publication 'Recommendations on the Safe Use of Pesticides' (1996). A copy of this publication should be retained on board and kept accessible for all crew members.
27.7.3 Where space and surface spraying operations are being carried out by the crew, the master should ensure that the appropriate protective clothing, gloves, respirators and eye protection are being worn.

27.7.4 Ship's personnel should not handle fumigants and such operations should be carried out only by qualified operators. Fumigation should only be carried out with the agreement of the ship's master

27.7.5 The master should choose to allow an in-transit fumigation only after first referring to the requirements of the ship's own national administration, and seeking the approval of the administration of the state of the vessel's next destination or port of call. The master should provide safe working conditions and ensure that at least two members of his crew including one officer have received the appropriate training. They should be familiar with the recommendations of the fumigant manufacturer concerning the methods of detection of the fumigant in air, its behaviour and hazardous properties, symptoms of poisoning, relevant first-aid treatment and special medical treatment and emergency procedures.

27.7.6 The 'Fumigation Warning' sign should be conspicuously displayed on cargo units or spaces under fumigation. A watchman should be posted to prevent access to areas of risk by unauthorised personnel.
CHAPTER 28
USE OF SAFETY SIGNS

28.1 Introduction
28.1.1 Safety signs should be used to indicate hazards or control measures to be taken where the hazard cannot otherwise be removed.

28.2 Signs and notices
28.2.1 The international standards for safety signs are explained in the following paragraphs. Annex 28.1 shows the international colour coding of signs.

28.2.2 Permanent signs are used:
• to give prohibitions, warnings and mandatory requirements
• to mark emergency escape routes
• to identify first aid facilities
• to show the location of fire fighting equipment.

28.2.3 Red signs mean either:
• stop doing something or don't do it (prohibition);
• stop/shut down or evacuate;
  or they mark the location and type of fire-fighting equipment

28.2.4 Signs of prohibition are based on a red circular band with a red diagonal bar and white backing. The symbol for the prohibited action is shown in black behind the red diagonal bar:
  for example, 'No Smoking' with a cigarette depicted.

28.2.5 A sign indicating fire-fighting equipment is a red square or rectangle, with information given in words or by a symbol in white. Alternatively an IMO sign is a square or rectangle, with information given in words or by a symbol in red.
28.2.6 **Yellow signs** are advisory and mean:
- be careful, or take precautions;

28.2.7 Warning signs are based on a yellow triangle with a black border The symbol for the hazard is shown in black:
- for example, poisoning risk with black skull and crossbones on the yellow background.

28.2.8 **Blue signs** are mandatory and mean:
- take specific action.
Mandatory signs are based on a blue disc. The symbol for the precaution to be taken is shown in white:
- for example, ‘Goggles to be worn’ with a man’s head with goggles depicted.
If, exceptionally, no suitable symbol is available, appropriate wording may be used instead:
- for example, ‘Keep Clear’.

28.2.9 **Green signs** mean:
- emergency escape; or
- first aid sign.

28.2.10 The sign is a green square or rectangle, with safety information shown by words or a symbol in white.
- for example, a white arrow on a green background points to an emergency exit.

28.2.11 If more information is needed to make clear the meaning of any symbols used in a safety sign or notice, then a supplementary sign with text only may appear below the sign:
- for example, ‘Not Drinking Water’. The supplementary sign should be oblong or square and either:
(a) white with text in black; or
(b) the same background colour as the safety colour used on the sign it is supplementing, with the text in the relevant contrasting colour

28.2.12 Shore based personnel and passengers may not be aware that they are colour blind, and colour should not be used as a sole indicator

28.2.13 Where a language other than English is extensively used on a ship, any text used in conjunction with a sign should usually be displayed also in that language.

28.3 Occasional signs

28.3.1 Illuminated signs, acoustic signals, hand signals and spoken signals may also be used for temporary hazards or circumstances.

28.3.2 Illuminated signs and acoustic signals must be tested regularly to ensure that they are working. Acoustic signs should comply with the IMO Code on Alarms and Indicators 1992.

28.3.3 The internationally understood hand signals for use of lifting appliances are given in the Annex to this chapter

28.3.4 Spoken signals should comply with the IMO Standard for Marine Navigational Vocabulary. This is particularly important when communicating with another ship or with shore-side workers abroad, where English is not much used.

28.4 Electrical wiring

28.4.1 The cores of electrical cables should be readily identifiable throughout their length by colours or numbers. Although various standards (British, other national or international) exist for colour, coding of cores, the colours specified in the standards differ. The colours found on any ship will therefore depend on the country of building or of manufacture of the cables. Care should therefore always be taken to make a positive identification of
cable duty, and colours should be used primarily as a means of conductor tracing.

28.4.2 Particular care is required when connecting plugs to domestic equipment which has been brought on to a ship, as a wrong connection could prove fatal. New British equipment should be supplied with cable to the international standard, i.e., brown for 'live', blue for 'neutral' and yellow/green for 'earth', but older equipment and that purchased abroad may have other colours.

28.5 Gas cylinders

28.5.1 Gas cylinders used on United Kingdom ships should be marked and colour coded according to the relevant British Standard Specification or equivalent.

28.5.2 Each cylinder should be clearly marked with the name of the gas and its chemical formula or symbol. The cylinder body should be coloured according to contents, with, where necessary, a secondary colour band painted around the neck of the cylinder to denote the particular hazards of the gas (flammability, toxicity etc.). Examples of such colour coding on gas cylinders commonly used on board ship are as follows:

<table>
<thead>
<tr>
<th>Name of gas</th>
<th>Chemical formula or symbol</th>
<th>Ground colour of container</th>
<th>Colour of band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>$O_2$</td>
<td>Black</td>
<td>None</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>$CO_2$</td>
<td>Black</td>
<td>None</td>
</tr>
<tr>
<td>Compressed Air</td>
<td>None (mixed gases)</td>
<td>French Grey</td>
<td>None</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>$N_2$</td>
<td>French Grey</td>
<td>Black</td>
</tr>
<tr>
<td>Acetylene</td>
<td>$C_2H_2$</td>
<td>Maroon</td>
<td>None</td>
</tr>
<tr>
<td>Propane</td>
<td>None (mixed gases)</td>
<td>Signal Red</td>
<td>None</td>
</tr>
<tr>
<td>Butane</td>
<td>None (mixed gases)</td>
<td>None Specified</td>
<td>Signal Red</td>
</tr>
</tbody>
</table>

Note: Cylinders of refrigerant gases are not allocated specified ground or band colours under the British Standard Specification.
28.5.3 Medical gas cylinders carried on board should similarly be marked in accordance with the relevant British Standard Specification or equivalent (See Appendix 1). The name of the gas or gas mixture contained in the cylinder should be shown on a label affixed to it. The chemical symbol of the gas should be given on the shoulder of the cylinder. The cylinder should also be colour-coded according to the contents as shown in the following examples:

<table>
<thead>
<tr>
<th>Name of gas</th>
<th>Symbol</th>
<th>Colour of Body</th>
<th>Colour of Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>( O_2 )</td>
<td>Black</td>
<td>White</td>
</tr>
<tr>
<td>Compressed Air (for breathing app)</td>
<td>AIR</td>
<td>Grey</td>
<td>White and Black</td>
</tr>
</tbody>
</table>

28.6 Pipelines

28.6.1 The following colour coding system is recommended for adoption for the main common pipeline services of United Kingdom registered ships:

<table>
<thead>
<tr>
<th>Pipe contents</th>
<th>Basic Identification Colour</th>
<th>BS Colour Reference BS 4800</th>
<th>Colour Code Band</th>
<th>BS Colour Reference BS 4800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (Fresh)</td>
<td>Green</td>
<td>12D 45</td>
<td>Blue</td>
<td>18E 53</td>
</tr>
<tr>
<td>Water (Salt)</td>
<td>Green</td>
<td>12D 45</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Water (Fire Extinguishing)</td>
<td>Green</td>
<td>12D 45</td>
<td>Safety red</td>
<td>04E 53</td>
</tr>
<tr>
<td>Compressed Air</td>
<td>Light Blue</td>
<td>20E 51</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Steam</td>
<td>Silver Grey</td>
<td>10A 03</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Oil (Diesel Fuel)</td>
<td>Brown</td>
<td>06C 39</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Oil (Furnace Fuel)</td>
<td>Brown</td>
<td>06C 39</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Oil (Lubricating)</td>
<td>Brown</td>
<td>06C 39</td>
<td>Emerald Green</td>
<td>14E 53</td>
</tr>
</tbody>
</table>

28.6.2 The basic identification colour should be applied on the pipe either on its whole length or as a colour band at regular intervals on the pipe. The colour should similarly be applied at junctions, both sides of valves, service appliances, bulkheads etc., or at any other place where identification might be necessary. Valves on pipelines used for firefighting should be painted red.
28.6.3 Where applicable, the colour code banding should be in approximately 100 mm widths at regular intervals along the length of the pipe on the basic identification colour or painted between two basic identification colour bands each of a width of about 150 mm as shown in the following examples:

<table>
<thead>
<tr>
<th>Pipe Contents</th>
<th>Basic colour (150mm approx.)</th>
<th>Colour Code (100mm approx.)</th>
<th>Basic colour (150mm approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (Fresh)</td>
<td>Green</td>
<td>Blue</td>
<td>Green</td>
</tr>
<tr>
<td>Water (Fire Extinguishing)</td>
<td>Green</td>
<td>Safety Red</td>
<td>Green</td>
</tr>
<tr>
<td>Diesel Fuel</td>
<td>Brown</td>
<td>White</td>
<td>Brown</td>
</tr>
</tbody>
</table>

28.6.4 Care should be taken to ensure that when replacing or repainting pipes, valves etc., the correct colour is used.

28.6.5 When it is necessary to know the direction of the flow of the fluid, this should be indicated by an arrow situated in the proximity of the basic identification colour and painted white or black in order to contrast dearly with that colour.

28.6.6 Such a system as recommended above would be useful, for instance, in tracing a run of pipes but should not be relied upon as a positive identification of the contents of the pipe; a check should always be made before opening up and precautions taken against the contingency that the content is other than that expected.

28.6.7 Other pipeline systems on ships, such as cargo pipelines, may be colour-coded in a similar fashion but no specific recommendations are made here because a comprehensive system to cover the needs of all types of ship would require so wide a range of colours that contrasts would be small and easily obscured by fading or dirt.
28.6.8 Colour coding of pipelines may vary from ship to ship and seamen moving from one ship to another should check with a competent officer what the colours mean on each particular vessel.

28.7 Portable fire extinguishers

28.7.1 Portable fire extinguishers must comply with the relevant British Standard or an equivalent alternative standard.

28.7.2 Fire extinguishers manufactured since June 1996, and all extinguishers manufactured since May 1997, must comply with the new Standard, EN 3. The body of the extinguisher is red, with a zone of colour of up to 5% of the external area to identify the extinguishing agent. Manufacturers have complied with this by printing the operating instructions in the appropriate colour.

28.7.3 It is possible to increase the visibility of the extinguishers by highlighting the area around the extinguisher with the appropriate colour coding (as in 28.7.4 below). No additional colour should be added to the extinguishers, as this may invalidate the kite mark.

28.7.4 BS 5423 applied to fire extinguishers manufactured before May 1997. The colour of these extinguishers should not conflict with the following recommended systems of colour coding by medium (BS 7863):

- Water - Signal Red
- Foam - Pale Cream
- Powder (all types) - French Blue
- Carbon Dioxide - Black
- Vaporising liquid (Halon) - Emerald Green

The area so coded should be large enough to be readily apparent. Where the coding does not cover the whole surface of the extinguisher it is recommended that the remaining area should be either;
(a) predominantly signal red, or
(b) of self-coloured (i.e. natural) metal.

28.7.5 Where there is a mixture of the two types of extinguishers on a ship, as far as possible they should be grouped so as to avoid confusion.
APPENDIX 1

Standards specifications referred to in this Code

NOTE: Copies of standards produced by British Standards Institution are obtained on microfilm, microfiche or CD from Technical Indexes Ltd, Willoughby Road, Bracknell, Berkshire RG12 4DW, telephone 01344 426311.

A. ARRANGED BY CODE CHAPTER

Chapter 1 Risk Assessment
1.10.1 BS 8800: 1996 Guide to occupational health and safety management systems.

Chapter 4 Personal Protective Equipment
4.5.3 EN 397: 1995 Specification for industrial safety helmets.
4.5.4 EN 812: 1998 Industrial bump caps.
4.8.2 BS 4275: 1997 Recommendations for the selection, use and maintenance of respiratory protective equipment.

Chapter 5 Safety Signs
5.1.1 BS 5378: 1980 Safety signs and colours.

Chapter 6 Means of Access and Safe Movement

Chapter 13 Safe Movement
13.5.2 BS MA 40: 1975 Marine guardrails, stanchions, etc. (obsolescent).

Chapter 17 Entering Enclosed or Confined Spaces
17.13.3 EN 137: 1993 Self-contained open-circuit compressed air breathing apparatus.
17.13.3 EN 139: 1995 Compressed air line breathing apparatus.
17.13.3 BS 1146: 1997 Self contained open-circuit breathing apparatus incorporating a hood.
Chapter 18  Boarding Arrangements

Chapter 20  Use of Work Equipment
20.4.1  BS 6500: 1990 Insulated flexible cords and cables.
20.12.4  BS 5655: 1986 Lifts and service lifts

Chapter 21  Lifting Plant
21.9.3  BS 1290: 1983 Wire rope slings and sling legs for general purposes.
21.9.3  BS 6210: 1983 Safe use of wire rope slings for general lifting purposes.

Chapter 23  Hot Work
23.3.1  EN 470-1: 1995 Protective clothing for use in welding and allied processes.
23.3.2  EN 169: 1992 Specification for filters for personal eye protection equipment used in welding and similar operations.
23.3.3  EN 470-1: 1995 Protective clothing for use in welding and allied processes.
23.7.1  BS 7193: 1989 Specification for lined lightweight rubber overshoes and overboots.

Annex 2  BS 638: (5 parts) Arc welding power sources.
BS 3212: 1991 Flexible rubber tubing, rubber hose and rubber hose assemblies for use in LPG vapour phase and LPG/air installations.


**Chapter 27**  
Hazardous Substances

27.4.2 BS 5609: 1986 Specification for printed pressure-sensitive adhesive-coated labels for marine use, including requirements for label base material.

**Chapter 28**  
Use of Safety Signs

28.5.1 BS 349: 1973 Safety of machinery.
28.5.3 BS 1319: 1976 Medical gas cylinders, valves and yoke connections.
28.6.1 BS 1710: 1984 Identification of pipelines and services.
28.7.2 EN 3: 1996 Portable fire extinguishers.
28.7.4 BS 5423: 1987 Portable fire extinguishers (withdrawn).
28.7.4 BS 7863: 1996 Recommendations for colour coding to indicate the extinguishing media contained in portable fire extinguishers.

**B. ARRANGED BY NUMBER**

**EUROPEAN NORMS**

<table>
<thead>
<tr>
<th>EN Number</th>
<th>EN Title</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 3: 1996</td>
<td>Portable fire extinguishers.</td>
<td>28.7.2</td>
</tr>
<tr>
<td>EN 137: 1993</td>
<td>Self-contained open-circuit compressed air breathing apparatus.</td>
<td>17.13.3</td>
</tr>
<tr>
<td>EN 139: 1995</td>
<td>Compressed air line breathing apparatus.</td>
<td>17.13.3</td>
</tr>
<tr>
<td>EN 169: 1992</td>
<td>Specification for filters for personal eye protection equipment used in welding and similar operations.</td>
<td>23.3.2</td>
</tr>
<tr>
<td>EN 397: 1995</td>
<td>Specification for industrial safety helmets.</td>
<td>4.5.3</td>
</tr>
</tbody>
</table>
EN 470-1: 1995 Protective clothing for use in welding and allied processes. 23.3.1, 23.3.3
EN 812: 1998 Industrial bump caps. 4.5.4
EN 1256: 1996 Specification for hose assemblies for equipment for welding, cutting and allied processes. 23.9.14
EN 60592: 1992 Specification for degrees of protection provided by enclosures (IP Code) 23.6.8

BRITISH STANDARDS

<table>
<thead>
<tr>
<th>BS Number</th>
<th>BS Title</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 349:1973</td>
<td>Safety of machinery</td>
<td>28.5.1</td>
</tr>
<tr>
<td>BS 638</td>
<td>Arc welding power sources</td>
<td>Chapter 23, (5 parts)</td>
</tr>
<tr>
<td>BS 1146:1997</td>
<td>Self contained open-circuit breathing apparatus incorporating a hood.</td>
<td>17.13.3</td>
</tr>
<tr>
<td>BS 1290:1983</td>
<td>Wire rope slings and sling legs for general purposes.</td>
<td>21.9.3</td>
</tr>
<tr>
<td>BS 1319:1976</td>
<td>Medical gas cylinders, valves and yoke connections.</td>
<td>28.5.3</td>
</tr>
<tr>
<td>BS 1710:1984</td>
<td>Identification of pipelines and services.</td>
<td>28.6.1</td>
</tr>
<tr>
<td>BS 2655 (10 parts)</td>
<td>Specification for lifts, escalators, passenger conveyors and paternosters.</td>
<td>20.12.12</td>
</tr>
<tr>
<td>BS 3212:1991</td>
<td>Flexible rubber tubing, rubber hose and rubber hose assemblies for use in LPG vapour phase and LPG/air installations.</td>
<td>Chapter 23, Annex 3</td>
</tr>
<tr>
<td>BS 4275:1997</td>
<td>Recommendations for the selection, use and maintenance of respiratory protective equipment</td>
<td>4.8.2</td>
</tr>
<tr>
<td>BS 4800:1989</td>
<td>Paint colours for building purposes.</td>
<td>28.6.1</td>
</tr>
<tr>
<td>BS 5378:1980</td>
<td>Safety signs and colours.</td>
<td>5.1.1</td>
</tr>
<tr>
<td>BS MA Number</td>
<td>BS MA Title</td>
<td>Code Reference</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------------------------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>BS MA 39</td>
<td>Ships' ladders. Steel, sloping.</td>
<td>Chapter 18, Annex 1</td>
</tr>
<tr>
<td>Part 2: 1973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS MA 40: 1975</td>
<td>Marine guardrails, stanchions, etc. (obsolescent).</td>
<td>13.5.2</td>
</tr>
<tr>
<td>BS MA 48: 1976 (87)</td>
<td>Design and operation of ship's derrick rigs</td>
<td>21.4.1</td>
</tr>
<tr>
<td>BS MA 89: 1980</td>
<td>Accommodation ladders (obsolescent).</td>
<td>Chapter 18, Annex 1</td>
</tr>
</tbody>
</table>
APPENDIX 2
Bibliography

ISO publications

Available from The Stationery Office bookshops and agents, or by mail from The Stationery Office Publications Centre, PO Box 276, LONDON SW8 5DT (a)

Maritime and Coastguard Agency Guidance and Codes of Practice


(b) Health and Safety Executive Guidance and Codes of Practice

- Anthrax: health hazards (Guidance note EH 23) ISBN 0-11-883194-1
- Asbestos (Guidance note MS 13) ISBN 0-11-885402-X
- Colour Vision (Guidance Note MS 7) ISBN 0-11-883950-0
- Drilling Machines: Guarding of Spindles and Attachments (Guidance Booklet HS (G) 44) ISBN 0-11-885466-6
- Electrical Safety in Arc Welding (Guidance Note HS (G) 118) ISBN 0-7176-0704-6
- Entry into Confined Spaces (Guidance Note GS 5) ISBN 0-11-883067-8
Fumigation using Methyl Bromide (Bromomethane) (Guidance Note CS12)

ISBN 0-11-883549-1

General COSSH ACOP (Control of Substances Hazardous to Health) and Carcinogens ACOP (Control of Carcinogenic Substances.) and Biological Agents ACOP (Control of Biological Agents): Control of Substances Hazardous to Hearth Regulations 1994. Approved Codes of Practice

ISBN 0-7176-0819-0

A Guide to Dangerous Substances in Harbour Areas Regulations, 1987

ISBN 0-11-883991-8

Hazard and Risk Explained. Control of Substances Hazardous to Health Regulations 1988 (COSHH). Health and Safety Information and COSHH (Leaflet IND (G) 67 (L))

Industrial Use of Flammable Gas Detectors (Guidance Note CS 1)

ISBN 0-11-883948-9

Introducing Assessment (Leaflet INF (G) 64 (L))

Occupational Exposure Limits (Guidance Note EH 40)

ISBN 0-11-885420-8

Protection against Electric Shock (Guidance Note GS 27)

ISBN 0-11-883583-1

Respiratory Protective Equipment a Practical Guide for Users

(Guidance Booklet HS (G) 53)

ISBN 0-11-885522-0

Respiratory Protective Equipment for Use against Asbestos

(Guidance Note EH 41)


Safety in Docks: Docks regulations 1988: Approved Code of Practice with Regulations and Guidance

ISBN 0-11-885456-9

Safety in the Use of Abrasive Wheels (Guidance Booklet HS (G) 17)

ISBN 0-11-883739-7
Visual Display Units
ISBN 0-11-883685-4

Welding, Framecutting and Allied Processes (Guidance Book HS (G) 139)

**Note:** Further information and a comprehensive list of HSE guidance is available from the HSE Library and Information Service at Rose Court 2 Southwark Bridge, London SE1 9HS; telephone 0171-717-6000.

(c) Statutory Instruments (SIs)

To purchase a copy of an Act of Parliament (e.g. a Merchant Shipping Act) or a regulation (statutory instrument or SI) made under such an Act from The Stationery Office you should quote the number of the relevant SI.

### 2. Maritime and Coastguard Agency free publications

Available from Eros Marketing, Delta House, Imber Court Business Park, East Molesey, Surrey KT8 OBN, telephone 0181 957 5008

(a) Booklets:
- Fire on Ships
- Personal Survival at Sea

Single copies of these booklets are also available from the MCA Information Centre, Spring Place, 105 Commercial Road, SOUTHAMPTON S015 1EG

(b) Merchant Shipping Notices (MSNs): provide mandatory information which must be complied with under UK legislation;

(c) Merchant Guidance Notes (MGNs): provide advice and guidance;

(d) Merchant Information Notices (MINs): provide information for limited audiences such as training establishments or equipment manufacturers, or which will only be valid for a short period of time (e.g. timetables for MCA examinations).

A current list of MSNs, MGNs and MINs is always available from the Maritime and Coastguard Agency Information Centre (see above).
3. IMO publications

Available from the International Maritime Organization, Publications Section, 4 Albert Embankment, London SE1 7SR, telephone 0171 7357611.

Code for the construction and equipment of ships carrying dangerous chemicals in bulk (BCH Code) (1990 edn)

Code for the construction and equipment of ships carrying liquefied gases in bulk (1983 edn)

Code of safe practice for solid bulk cargoes (1989 edn)

Code for existing ships carrying liquefied gases in bulk (1976 edn)

Emergency procedures for ships carrying dangerous goods: see Supplement to IMDG Code

International code for the construction and equipment of ships carrying dangerous chemicals in bulk (IBC Code) (1990 edn)
IMO sales no: IMO-100E ISBN 92-801-1315-1

International code for the construction and equipment of ships carrying liquefied gases in bulk (IGC Code) (1983 edn)

International Maritime Dangerous Goods Code (IMDG Code)
(1990 edition comprise 4 loose-leaf volumes)
IMO sales no: IMO-200E ISBN 92-801-1314-3

International Maritime Dangerous Goods Code: Supplement
(The contents of the 1990 Supplement are:
  Emergency procedures (EmS); Medical first aid Guide (MFAG)
  Solid chemicals in bulk (BC Code); Reporting procedures
  Packing cargo transport units; Use of pesticides in ships)

Medical First Aid Guide for Use in Accidents Involving Dangerous Goods (MFAG): see Supplement to IMDG Code
4. International Chamber of Shipping publications

Available from Witherby and Co Ltd, 32-36 Aylesbury Street London EC1R OET, telephone 0171-251-5341

- Safety in chemical tankers (1977 booklet) ISBN 0-854930256
- Tanker safety guide (chemicals) (forthcoming publication) ISBN 0-948691506

5. The International Shipping Federation Publication

Available from The International Shipping Federation, 12 Carthusian Street London EC1M 6EB, telephone 0171-417-8844

- Pirates and Armed Robbers — A Master's Guide
INDEX

Abandon ship drills 10.2.4, 10.3.1
Abrasive wheels 20.6
Access
   cranes 21.3.8
   holds 26.6
Access equipment — see boarding arrangement; means of access
Access lids — see inspection/access lids
Accidents
   investigation 3.10.4, 3.14
   recording 3.8.5, 3.10.14, 3.14.10-12
   reporting 3.8.9, 3.14.2-3
   witnesses 3.14.5-8
Accommodation ladders 6.1.5, 6.3, 18.2.1-2, 18.2.5, A18.2
Acetylene
   cylinders 23.8.3-4
   gas welding and cutting 23.9.3-5, 23.9.8-9
Acid
   batteries 22.17.6, 22.17.1-4
   disinfectants 14.1.18
Acoustic signals 28.3.4, 28.3.1-2
Aerials 22.12.7-8
Aerosols 12.5.2
Alarm systems 10.2.3-4
   isolation 22.2.2
   visual 15.7.4
Alcohol
   avoidance in heat 12.3.1
   with medication 12.2.8
   misuse 12.2.3
Alkaline batteries 22.16.17-18, 22.18
Anchoring 25.2
Arc welding 23.7
Armed robbery 11.4-5
Asbestos 2.3.2, 12.6.4, 27.2.6, 27.3

Barrier creams 12.2.4
Batteries
  alkaline 22.16.17-18.22.18
  charging 22.16.12
  lead-acid 22.16.17-18, 22.17
  storage 22.16
Beams 26.4.5-9
Benzene 27.2.6
Bights of rope 12.7.12
Bleach 14.1.18
Blowpipes 23.9.18-21
Boarding arrangements 18
  ladders 18.4, 25.4.2
  lighting 18.3
  pilots 18.8
  positioning equipment 18.2
  safety 18.3, 18.5
  special circumstances 18.7
Body protection 4.11
Boilers 15.8
  blowback 15.8.2
  maintenance 22.5
  operating instructions 15.8.1
Boots — see footwear Bosun’s chair 15.5
Breathing apparatus 4.8.7-8, 10.1.7, 10.1.9, 10.3.7, 10.5.4
  confined spaces 17.2.2, 17.11.1-4, 17.13.1-7
Bump caps 4.5.4
Buoyancy aids 4.12
Buoys 25.4
Burns and scalds 12.7.7-9, 22.18.2

Cables — see wires and cables
Cargo gear, overhaul 21.7
Cargo spaces — see confined spaces
Casting off 25.3
Catering equipment 14.7
Caustic soda 14.1.18
Certificates and reports (lifting plant) 7.8
Chain stoppers 21.6.2
Chemicals 27.5
   disposal 8.6.3
   exposure 10.6.3
   unlabelled 12.6.3
Chisels 20.3.3
Choppers 14.8.5-6
Cigarettes — see smoking
Circuit-breakers 22.6.1, 22.11.3
Clothing — see personal protective clothing, working clothing
Cold stores — see refrigeration Colour coding
   electrical wiring 28.4
   gas cylinders 28.5.1-3
   pipelines 28.6
   portable fire extinguishers 28.7.2-4
   raw/cooked food 143
   safety signs 5.2.1, 5.4, 28.2.3-12
Competent persons
   certification of lifts 20.12.1-4
   confined space assessment 17.3
high voltage equipment maintenance 22.11.3

testing of lifting plant 21.9

Compressed gas cylinders 23.8, 28.5.1-3

Confined spaces
  see also — boilers
  assisting a casualty 10.6.1
  contaminated air 17.4.13
  definition 6.5.1
  drills 10.5
  entry into 6.5, 17.2.1, 17.5, 17.8, 17.9
  flammable gases and vapours 17.4.11-12, 17.6.8-11
  maintenance of equipment 17.13.9-10
  MS Regulations 6.5, 17.12.1
  oil cargoes 17.4.2-4
  oxygen deficiency 17.4.1, 17.6.6-7
  permit-to-work system 17.7
  preparing and securing for entry 17.5
  procedures before entry 17.2.1, 17.8
  procedures on completion 17.10
  procedures during entry 17.9
  security 6.5.2
  testing the atmosphere 17.6
  toxic gases 17.6.12-14
  ventilation 12.3.2

Cotton
  clothing in heat 12.3.3
  storage 9.5.2

Cradles and stages 15.4

Cranes 7.7.2, 21.3.5-8

Cross contamination, food 14.1.13-14

Cuts and abrasions 12.7.5
  food preparation 14.1.4—5
  health and hygiene 12.2.4
  skin resistance 22.11.1
Dangerous goods

see also — hazardous substances; International Maritime Dangerous Goods (IMDG) Code

disposal overboard 10.7.4
emergency procedures 10.7
fire 10.7.7-12
spillages 10.7.4-6
transport labelling 27.4.1-2
Dangerous occurrences, recording 3.8.5, 3.10.14, 3.14.10
Dangerous spaces — see confined spaces

Deck

  drainage 13.2
  duck boards 15.2.4
  maintenance 6.4.3
  safety harness 4.10
Deep fat fryers 14.3, 14.5
Dermatitis 2.3.2, 12.2.4
Derricks

see also — winches

  rigging 21.4.1, 21.5.4
  safe operation 21.4.3-13
  union purchase 21.2.20-21, 21.5
Diarrhoea 14.1.7
Diesel engines 22.6.2-3, 22.6.5-6

see also — watertight doors

  refrigerated rooms 14.9.1-4
  secure 8.5.1, 12.5.1
Drills — see emergency procedures; musters and drills

Drowning, protection against 4.12

Drugs 11.6

see also — medication
Dry chemical fire extinguishers 10.7.10
Dry-cleaning operations 27.6
Drying cabinets 9.3.8
Duck boards 13.2.4
Dust 12.6.6

Ear protection 4.6.3, 4.6.2
Electric shock 20.4.2, 22.11.1-2
Electric welding 23.6.23.7
Electrical equipment 7.2.6

see also — heaters; portable electrical equipment
fire precautions 9.3
hazards 12.7.8, 12.7.13-15
isolation 10.3.4
live 22.11.6
maintenance 22.11.3-7
makeshift fittings 9.3.3
MS Regulations 7.2
overloading circuits 8.5.1, 9.3.4, 12.5.1
wires and cables 9.3, 9.5.4, 28.4

Emergency procedures
assisting a casualty 10.6
dangerous goods 10.7
enclosed spaces 10.5, 10.6.1
fire aboard 10.1
musters and drills 10.2-5
safety induction 8.2

Emergency pumps 10.3.1
Enclosed spaces — see confined spaces

Engines
see also — diesel engines
lifeboats 10.4.5
maintenance 22.7
rooms 15.7.7-9
Entry into Dangerous Spaces Regulations 6.5, 17.12.1
Environmental responsibilities 8.6
Examination
see also — certificates and reports
lifting plant 7.6
Explosions 23.5
Extension runners 22.15
Extinguishers — see dry chemical fire...; fixed...; portable...
Eyes
injuries 12.7.3
protection 10.7.3, 20.4.10, 24.3.3
radiation 22.12.3
tests 20.11.2
Eyewash 22.17.4

Face protection 4.7
see also — eyes
Feet — see foot protection
Fencing — see guard-rails and fencing
Fire aboard
common causes 8.2.3, 14.3, 14.5
dangerous goods 10.7.7-12
emergency procedures 10.1 Fire
blankets 9.6.2
Fire drills 10.2.4, 10.3
Fire extinguishers — see dry chemical...; fixed...; portable
Fire precautions
electrical equipment 9.3
galleys 9.6.1
machinery spaces 9.5
safety induction 8.2
smoking 8.2.2, 9.2
spontaneous combustion 9.4
Fixed fine-fighting installation 10.3.5, 10.7.9
Fixed installations 20.5
Flame-cutting — see hot work
Flammable materials
  confined spaces 17.4.11-12, 17.6.8-11
  storage 22.11.5
Floor plates 22.3
Food preparation and handling 14
  see also — galleys Footwear 19.4.9
  protective 4.9.2-3
  safety 13.1.1
Fridges — see refrigeration
Frozen food 14.1.12
Fumes — see toxic substances
Fumigation 12.5.3, 27.7.4-5

Galleys
  fire fighting 9.6.2
  fire precautions 9.6.1
  stoves 14.3
  waste 8.6.3
Gangways 18.2.5, 18.2.1-3, A18.2
Garbage
  see also — waste
  disposal 8.6.-3, 14.1.19, A8.1
  handling 8.6.2
  spontaneous combustion 9.4.1
  storage 8.6.2, 14.1.19
Gas cylinders
  colour coding 28.5.1-3
medical 28.5.3
Gas leak 14.4.1
  see also — LPG appliances
Gas welding and cutting 23.9
Gloves, protective 4.9.1
Goggles 23.3.2
Guard-rails and fencing 13.5.2-4
Guarding of Machinery and Safety of Electrical Equipment Regulations 7.2

Hair nets 4.5.5
Hand injuries 12.7.1
Hand protection 4.9.1
Hand signals 21.2.15, A21.1
Hand tools 20.3
Handrails 22.3
Hatch covers 7.4, 26.1-4
  closure 13.5.1
  maintenance 26.3
  mechanical 26.3
  non-mechanical 26.4
  secured 26.3.6
Hatches and Lifting Plant Regulations 7.3
Hazardous substances 12.6
  general advice 27.1
  health surveillance 2.3.2
Hazards
  definition 1.2.1
  identification 17.4
Head protection 4.5, 12.7.4
Health and hygiene 8.4, 12.2
  see also — ship-board housekeeping
  clothing 12.4
  common injuries 12.7
cuts and abrasions 12.2.4
food preparation and handling 14.1
hazardous substances 12.6
hot climates 8.4.3, 12.3
infections 12.2.2, 12.2.6
medication 8.4.2, 12.2.7-10
vaccinations 8.4.2
Health and Safety at Work Regulations RF11-25, 7.1, 8.7.2
see also — Introduction and regulatory framework Health
surveillance 2, 12.6.9
Hearing protectors 4.6, 15.7.3-4 20.4.10
Heat — see hot climates Heaters 12.7.14
electric 9.3.7, 9.3.11
portable 9.3.9-10
Helmets — see head protection
High pressure jetting equipment 1-4, 20.7.5, 20.7.1-3
High visibility clothing 4.11.2
Hoists 6.3, 10.4.19
Holds — see confined spaces
Hoses 10.3.3
gas welding and cutting 23.9.11-16
Hot climates, health and hygiene 8.4.3, 12.3
Hot work
electric welding equipment 23.6
fire/explosion precaution 23.5
gas welding and cutting 23.9
general advice 23.2
personal protective equipment 23.3, 23.7.1
pre-use equipment check 23.4
ripple magnitude 23.6.11
ventilation 23.2.4
Hydraulic equipment 20.7.4, 20.7.1-2
jacks 20.8
maintenance 22.10.1-6

Hygiene — see health and hygiene

Illuminated signs 28.3.1-2
IMDG Code — see International Maritime Dangerous Goods Code
Infections 12.2.2, 12.2.6
Inoculations 8.4.2, 12.2.9
Insecticides 12.5.3
Inspection/access lids 26.5
International Maritime Dangerous Goods (IMDG) Code 27.1.5, 27.4.2
International Safety Management (ISM) Code RF 9, 10
International terrorism 11.2

Jacks — see hydraulic equipment

Knives 14.8.1-7

Ladders 6.4.8, 13.1.1
   accommodation 6.1.5, 6.3, 18.2.5, 18.2.1-2, A18.2
   boarding 18.4, 25.4.2
   pilot 6.3
   portable 6.1.5-6, 15.3, 18.4.1-3, 26.6.2
   rope 6.1.5, 18.4.4-6
Laundry equipment 20.13
   see also — dry-cleaning
Lead
batteries 22.16.17-18.22.17
paint 24.3.1-2
Lifeboats 10.4.5
   see also — liferafts
   drills 10.4
Lifebuoys 6.1.7, 18.2.7, 25.4.1, 25.4.3
Lifejackets 4.12, 10.2.5, 10.4.2, 25.4.1  
lifelines 4.10, 10.5.4, 13.1.1, 13.3.3, 17.11.5  
Liferafts 10.4.12, 10.4.20  
Lifting appliance 7.5.2, 7.5.4  
Lifting gear 7.5.2, 21.2.25  
see also — powered mobile lifting appliances

Lifting plant 21, 7.5  
cargo gear 21.7  
certificates and reports 7.8  
controls 21.2.5-7  
cranes 21.3  
defects 21.9  
derricks 21.4-5  
examination and testing 7.6  
maintenance 7.5.5  
marking 7.7  
MS Regulations 7.3  
operation 7.5.8, 21.2.8-32  
safe working load (SWL) 21.2.33-36  
stalkers 21.6  
training 7.5.9  
trucks 21.8  
winches 21.3  

Lifts, personnel 20.12, 20.12.2  

Lighting  
adequate 13.4.1  
battery compartments 22.16.3  
fire precautions 9.3.5  
maintenance 13.4.4, 22.4.10  
means of access 6.1.4, 6.4.4-5  
minimum glare 13.4.2  
portable 20.4.4  
security 11.5
work/transit areas 8.5.1, 12.5.1
Litter — see garbage
LPG appliances 14.4

Machinery
  maintenance 22.2.4, 22.4
  MS Regulations 7.2
  reassembly 22.4.8-9
Machinery spaces 15.7
  boilers 15.8
  engine rooms 15.7.7-9
  fire precautions 9.5
  unmanned 15.9
Making fast 25.3
Malaria 12.2.5
Manual handling 19, 12.7.11
  lifting 19.4
  resting 19.4.11
Marine Accident Investigation Branch (MAIB) 3.8.9, 3.14.1
Means of access 6.A18.1
  equipment maintenance 18.6
  ladders 6.1.5-6, 6.3, 6.4.8
  lighting 6.1.4, 6.4.4-5
  MS Regulations 6.1
  security 11.2, 11.4.2, 11.5
Medication 8.4.2, 12.2.7-10
Microwave ovens 14.6
Microwave radiation 22.12.3
Mooring 12.7.12, 25.3, 25.4
Mosquito bites 12.2.5
Musculo-skeletal injuries 19.2.1, 19.2.3
Musters and drills 10.2-5
  see also — fire drills
Noise
  see also — hearing protectors
  health surveillance 2.3.2
  machinery spaces 15.7.3-4

Oil
  see also — waste oil
  leakage 15.7.5-6

Oxygen
  compressed gas cylinders 23.8.3-4
  deficiency 17.4.1, 17.6.6-7
  gas welding and cutting 23.9.2, 23.9.22, 23.9.4-5

Painting
  dust 24.3.1-2
  general advice 24.1-2
  lead based paint 24.3.1-2
  no smoking 24.3.5
  preparation and precaution 24.3
  spraying equipment 24.4
  ventilation 24.3.4

Permit-to-work systems 16, A16.1, 17.7

Personal protective equipment 4, 17.11.7, 22.14.5, 27.2.3
  employer duties 4.2
  hot work 23.3, 23.7.1
  MS Regulations 4.2-3
  paint spraying 24.4.3
  worker duties 4.3

Personnel lifts 20.12

Pesticides 27.7 Pilot
  boarding 6.3, 18.8
  Pipelines 15.7.2, 28.6

Piracy 11.4-5
Pneumatic equipment 20.4.6, 20.7.1-2, 20.7.6-7
see also — vibration
maintenance 22.10.1-4
Portable electrical equipment 9.3.9-10, 22.16.5
Portable fire extinguishers 10.1.4-5, 10.3.6, 28.7
colour coding 28.7.2—4
hot work 23.5.6
Portable ladders 6.1.5-6, 15.3, 18.4.1-3, 26.6.2
Portable lights 13.4.7-8, 17.11.6, 20.4.4, 23.2.3
Power tools 20.4
Powered mobile lifting appliances 13.7
Protective Clothing and Equipment Regulations 4.2-3
see also — personal protective equipment
Pumps — see emergency pumps
Punts 15.6

Radio equipment 10.4.7
electrical hazards 22.13
portable 25.2.2, 25.3.1
security 11.5
servicing 22.12
Record of accidents 3.8.9, 3.8.5, 3.10.14, 3.14.10-12
Refrigeration
compartments 22.8
leakages 14.9.6, 15.10.4, 22.8.1
machinery 15.10, 22.8
rooms 14.9.6, 14.9.1-4
Rescue harnesses 17.11.5
Respiratory protective equipment 4.8, 10.7.3, 12.3.4
see also — breathing apparatus
respirators 4.8.4-6
resuscitators 4.8.9, 17.13.8
Resuscitators 4.8.9, 17.13.8
Risk assessment 1.1.3-10
- employers’ responsibility 1.1.1-5, 1.6.1
- hazardous substances 12.6.2, 27.1.2-5
- main elements 1.10.A1.1
- pro-forma 1.9
- record of assessment 1.5.2
- self-employed persons 1.1.3

Rodents 12.2.6
Rope ladders 6.1.5, 18.4.4-6
Ropes 20.9
  - chemical resistance 20.9.2
  - friction 20.10.6
  - inspection 20.9.7, 20.10.3, 21.2.28
  - man-made fibres 20.9.4, 20.10
  - mooring 25.3.5, 25.3.11
  - polypropylene 20.9.5
  - splicing 20.10.7-8, 21.2.24
  - storage 20.9.3
  - stretching 20.10.5
  - wire 3.11, 21.2.24, 21.2.28, 25.3.5

Rubbish — see garbage
Rust removal 24.3.3

Safe movement 13, 6.4, 18.3
  - permanent fittings 13.3.5
Safe Movement on Board Ship Regulations 6.4
Safe working toad (SWL) 7.7, 21.2.33-36
Safety caps 4.5.5
Safety committees 3.6, 3.8.8, 3.9.2, 3.11.4
  - agenda 3.13.3-7
  - general advice 3.13
  - minutes 3.13.8-11
  - termination of appointment 3.7.3
Safety culture 3.1.2
Safety harness 4.10
Safety helmets 4.5.1-3
Safety induction 8, 3.10.2
  accidents and medical emergencies 8.3
  emergency procedures 8.2
  fire precautions 8.2
  health and hygiene 8.4
Safety nets 6.1.8, 18.5
Safety officers
  accident investigation 3.10.4, 3.14
  appointment 3.4
  compliance with safety requirements 3.10
  duties 3.9, 3.10.15-16
  promotional material 3.10.3
  record of accidents 3.8.9, 3.8.5, 3.10.14, 3.14.10-12
  safety inspections 3.10.6-13.A3.1
  termination of appointment 3.7.1
Safety officials 3
  employer duties 3.2
  MS Regulations 3.3
  support 3.8
  termination of appointments 3.7
Safety representatives 8.9.1
  election 3.5
  general advice 3.12
  powers 3.11
  termination of appointment 3.7.2
Safety signs 5, 6.4.6, 20.12.9, 20.12.11
  blue 28.2.8
  colour coding 5.2.1, 5.4, 28.2.3-12
  green 28.2.9
  language 28.2.13
occasional signs 28.3
passenger ships 5.1.2
permanent signs 28.2.2
red 28.2.3-5
yellow 28.2.6-7
Saws 14.8.8, 20.3.4
Scalds — see burns and scalds
Secure areas 11.5
Security 11
dangerous spaces 6.5.2
drugs 11.6
international terrorism 11.2
piracy and armed robbery 11.4-5
stowaways 11.3
tavel advice notices 11.7
Self-employed persons, risk assessment 1.1.3
Semi-conductors 22.14.2-5
Ship-board housekeeping 8.5, 12.5
Ship-board vehicles 13.7, 21.8
Signallers 21.2.11-15
see also — hand signals
Signs 8.5.1
see also — safety signs
"Fumigation Warning" 27.7.6
"No Smoking" 8.2.2, 9.2.1, 23.8.3
Slings, lifting cargo 7.7.4-5
Slippery surfaces 13.1.1, 13.3.2, 14.2
Smoking 9.2, 12.7.6
battery compartments 22.16.2
food preparation 14.1.2
painting 24.3.5
sprayed atmospheres 12.5.3
vessel regulations 8.2.2
Solvents 22.2.5
  dry-cleaning 27.6.1-2
  health surveillance 2.3.2
Spanners 20.3.2
Spillages 10.7.4-6
Spontaneous combustion 9.4 Stages
  — see cradles and stages
Standards of Training, Certification and Watchkeeping Convention 1995 8.1
Steam winches 21.3.3-4
Steam-boilers 14.3
Steering gear maintenance 22.9
Stoppers 21.6, 25.3.12
Storage batteries 22.16
Store rooms 14.9.7-9
Stoves 14.3
Stowaways 11.3
Substances hazardous to health — see hazardous substances
Sun burn — see burns and scalds
Surveillance
  see also — health surveillance
  security 11.4.3
Survival craft drills 10.4
SWL see — safe working load

Tanker Safety Guides 27.1.5
Temporary lighting — see portable lighting
Terrorism 11.2
Testing
  see also — certificates and reports
  lifting plant 7.6
Tools 20
  see also — electrical equipment, hydraulic equipment, pneumatic equipment
hand 20.3
metal22.16.10
misuse 12.7.10
Towing 25.5
Toxic substances 12.6, 17.6.12-14, 22.12.5-6, 27.1.2-5
Training
  see also — safety induction
  lifting plant 7.5.9
  new personnel 8
Transit areas 13.3
Travel advice notices 11.7
Tripping hazards 13.1.1, 14.2
Trucks 21.8
  see also — ship-board vehicles

Ultraviolet radiation 22.12.3
Union purchase 21.5, 21.2.20-21

Vaccinations 8.4.2, 12.2.9
Valves22.14.1-2
Vehicles — see ship-board vehicles
Ventilation
  confined spaces 12.3.2
  hot work 23.2.4
  painting 24.3.4
Vibration
  tools 2.3.2
  "white finger" 20.4.11
Visual alarms 15.7.4
Visual display units (VDUs) 20.11

Washing — see laundry equipment
Waste
chemicals 8.6.3
disposal 8.5.1, 8.6.3, 9.4.1, 9.5.2, 12.5.1, 14.1.19
galley 8.6.3
oils 8.6.3, 15.7.6
spontaneous combustion 9.4.1
storage 14.1.19
Watchkeepers 11.5
Water hoses 11.5
Watertight doors 13.6
Weighing anchor 25.2
Welding see hot work "White finger" 20.4.11
Winches 21.3.1-4, 21.4.10, 21.4.13
Wire ropes 3.11, 21.2.24, 21.2.28, 25.3.5
Wires and cables 9.3, 9.5.4, 23.6.7-8, 28.4
Working aloft and outboard
   Bosun's chair 15.5
   cradles and stages 15.4
   general guidance 15.2
   portable ladders 15.3
   safety harness 4.10.1 Working clothes 12.4
   see also — personal protective clothing

X-ray radiation 22.12.4